These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 26894376)
41. A Monte Carlo study on the performance evaluation of a parallel hole collimator for a HiReSPECT: A dedicated small-animal SPECT. Abbaspour S; Tanha K; Mahmoudian B; Assadi M; Pirayesh Islamian J Appl Radiat Isot; 2018 Sep; 139():53-60. PubMed ID: 29704706 [TBL] [Abstract][Full Text] [Related]
43. Assessment of scatter compensation strategies for (67)Ga SPECT using numerical observers and human LROC studies. Farncombe TH; Gifford HC; Narayanan MV; Pretorius PH; Frey EC; King MA J Nucl Med; 2004 May; 45(5):802-12. PubMed ID: 15136630 [TBL] [Abstract][Full Text] [Related]
44. Objective comparison of lesion detectability in low and medium-energy collimator iodine-123 mIBG images using a channelized Hotelling observer. Gregory RA; Murray I; Gear J; Aldridge MD; Levine D; Fowkes L; Waddington WA; Chua S; Flux G Phys Med Biol; 2017 Jan; 62(1):17-30. PubMed ID: 27973344 [TBL] [Abstract][Full Text] [Related]
45. Optimization and evaluation of reconstruction-based compensation methods and reconstruction parameters for Tc-99m MIBI parathyroid SPECT. Ekjeen T; Tocharoenchai C; Pusuwan P; Fung GS; Ghaly M; Du Y; Frey EC Phys Med; 2015 Mar; 31(2):159-66. PubMed ID: 25555904 [TBL] [Abstract][Full Text] [Related]
46. Optimization of iterative reconstruction parameters with attenuation correction, scatter correction and resolution recovery in myocardial perfusion SPECT/CT. Okuda K; Nakajima K; Yamada M; Wakabayashi H; Ichikawa H; Arai H; Matsuo S; Taki J; Hashimoto M; Kinuya S Ann Nucl Med; 2014 Jan; 28(1):60-8. PubMed ID: 24214735 [TBL] [Abstract][Full Text] [Related]
47. High-resolution versus high-sensitivity SPECT imaging with geometric blurring compensation for various parallel-hole collimation geometries. Zhang B; Zeng GL IEEE Trans Inf Technol Biomed; 2010 Jul; 14(4):1121-7. PubMed ID: 20460211 [TBL] [Abstract][Full Text] [Related]
48. A comparison of 180 degrees and 360 degrees acquisition for attenuation-compensated thallium-201 SPECT images. LaCroix KJ; Tsui BM; Hasegawa BH J Nucl Med; 1998 Mar; 39(3):562-74. PubMed ID: 9529312 [TBL] [Abstract][Full Text] [Related]
49. Characterization of septal penetration in 511 keV SPECT. Laymon CM; Turkington TG Nucl Med Commun; 2006 Nov; 27(11):901-9. PubMed ID: 17021431 [TBL] [Abstract][Full Text] [Related]
50. Validation of prone myocardial perfusion SPECT with a variable-focus collimator versus supine myocardial perfusion SPECT with or without computed tomography-derived attenuation correction. Takamura T; Horiguchi Y; Kanna M; Matsushita H; Sudo Y; Kikuchi S; Ueda T; Sasaki R; Morita Y Ann Nucl Med; 2015 Dec; 29(10):890-6. PubMed ID: 26307758 [TBL] [Abstract][Full Text] [Related]
51. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study. Roshan HR; Mahmoudian B; Gharepapagh E; Azarm A; Pirayesh Islamian J Appl Radiat Isot; 2016 Feb; 108():124-128. PubMed ID: 26720261 [TBL] [Abstract][Full Text] [Related]
52. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system. Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362 [TBL] [Abstract][Full Text] [Related]
53. Predicting human performance by channelized Hotelling observer in discriminating between Alzheimer's dementia and controls using statistically processed brain perfusion SPECT. Shidahara M; Inoue K; Maruyama M; Watabe H; Taki Y; Goto R; Okada K; Kinomura S; Osawa S; Onishi Y; Ito H; Arai H; Fukuda H Ann Nucl Med; 2006 Nov; 20(9):605-13. PubMed ID: 17294671 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection. Brankov JG Phys Med Biol; 2013 Oct; 58(20):7159-82. PubMed ID: 24051342 [TBL] [Abstract][Full Text] [Related]
56. Projection space image reconstruction using strip functions to calculate pixels more "natural" for modeling the geometric response of the SPECT collimator. Hsieh YL; Zeng GL; Gullberg GT IEEE Trans Med Imaging; 1998 Feb; 17(1):24-44. PubMed ID: 9617905 [TBL] [Abstract][Full Text] [Related]
57. Design and simulation of a full-ring multi-lofthole collimator for brain SPECT. Van Audenhaege K; Vandenberghe S; Deprez K; Vandeghinste B; Van Holen R Phys Med Biol; 2013 Sep; 58(18):6317-36. PubMed ID: 23966017 [TBL] [Abstract][Full Text] [Related]
58. Clinical usefulness of a collimator distance dependent resolution recovery in myocardial perfusion SPECT: a clinical report from a single institute. Tashiro K; Tomiguchi S; Shiraishi S; Yoshida M; Sakaguchi F; Yamashita Y Ann Nucl Med; 2011 Feb; 25(2):133-7. PubMed ID: 21104346 [TBL] [Abstract][Full Text] [Related]
59. Stimulating technetium-99m cerebral perfusion studies with a three-dimensional Hoffmann brain phantom: collimator and filter selection in SPECT neuroimaging. Kim HJ; Karp JS; Mozley PD; Yang SO; Moon DH; Kung HF; Lee HK; Alavi A Ann Nucl Med; 1996 Feb; 10(1):153-60. PubMed ID: 8814722 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Minarik D; Sjögreen Gleisner K; Ljungberg M Phys Med Biol; 2008 Oct; 53(20):5689-703. PubMed ID: 18812648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]