These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26894402)

  • 1. High-throughput screening methods for nitrilases.
    Xue YP; Yang YK; Lv SZ; Liu ZQ; Zheng YG
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3421-32. PubMed ID: 26894402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput screening assay for distinguishing nitrile hydratases from nitrilases.
    Angelini LM; da Silva AR; Rocco Lde F; Milagre CD
    Braz J Microbiol; 2015 Mar; 46(1):113-6. PubMed ID: 26221095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening for distinguishing nitrilases from nitrile hydratases in Aspergillus and application of a Box-Behnken design for the optimization of nitrilase.
    Santos EDC; de Menezes LHS; Santos CS; Santana PVB; Soares GA; Tavares IMC; Freitas JS; de Souza-Motta CM; Bezerra JL; da Costa AM; Uetanabaro APT; Porto ALM; Franco M; de Oliveira JR
    Biotechnol Appl Biochem; 2022 Oct; 69(5):2081-2090. PubMed ID: 34617628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From sequence to function: a new workflow for nitrilase identification.
    Egelkamp R; Friedrich I; Hertel R; Daniel R
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4957-4970. PubMed ID: 32291488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry.
    He YC; Ma CL; Xu JH; Zhou L
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):817-23. PubMed ID: 21038095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput screening method for determining the substrate scope of nitrilases.
    Black GW; Brown NL; Perry JJ; Randall PD; Turnbull G; Zhang M
    Chem Commun (Camb); 2015 Feb; 51(13):2660-2. PubMed ID: 25574524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications.
    Martínková L; Rucká L; Nešvera J; Pátek M
    World J Microbiol Biotechnol; 2017 Jan; 33(1):8. PubMed ID: 27858339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research.
    Gong JS; Lu ZM; Li H; Shi JS; Zhou ZM; Xu ZH
    Microb Cell Fact; 2012 Oct; 11():142. PubMed ID: 23106943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel sensitive high-throughput screening strategy for nitrilase-producing strains.
    Zhu Q; Fan A; Wang Y; Zhu X; Wang Z; Wu M; Zheng Y
    Appl Environ Microbiol; 2007 Oct; 73(19):6053-7. PubMed ID: 17675436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent research advancements on regioselective nitrilase: fundamental and applicative aspects.
    Chen Z; Zhao J; Jiang S; Wei D
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6393-6405. PubMed ID: 31236614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrilase: a promising biocatalyst in industrial applications for green chemistry.
    Shen JD; Cai X; Liu ZQ; Zheng YG
    Crit Rev Biotechnol; 2021 Feb; 41(1):72-93. PubMed ID: 33045860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformations with nitrilases.
    Martínková L; Kren V
    Curr Opin Chem Biol; 2010 Apr; 14(2):130-7. PubMed ID: 20083424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection and screening for enzymes of nitrile metabolism.
    Martínková L; Vejvoda V; Kren V
    J Biotechnol; 2008 Feb; 133(3):318-26. PubMed ID: 18055053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial nitrilases and their regulation.
    Chhiba-Govindjee VP; van der Westhuyzen CW; Bode ML; Brady D
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):4679-4692. PubMed ID: 31049619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring nitrilase sequence space for enantioselective catalysis.
    Robertson DE; Chaplin JA; DeSantis G; Podar M; Madden M; Chi E; Richardson T; Milan A; Miller M; Weiner DP; Wong K; McQuaid J; Farwell B; Preston LA; Tan X; Snead MA; Keller M; Mathur E; Kretz PL; Burk MJ; Short JM
    Appl Environ Microbiol; 2004 Apr; 70(4):2429-36. PubMed ID: 15066841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing the potential of nitrilase: Unveiling their diversity, catalytic proficiency, and versatile applications.
    Zhou SP; Xue YP; Zheng YG
    Biotechnol Adv; 2024; 72():108352. PubMed ID: 38574900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrilase enzymes and their role in plant-microbe interactions.
    Howden AJ; Preston GM
    Microb Biotechnol; 2009 Jul; 2(4):441-51. PubMed ID: 21255276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric Remodeling of Nitrilase Active Pocket Based on ALF-Scanning Strategy To Enhance Aromatic Nitrile Substrate Preference and Catalytic Efficiency.
    Wang ZK; Gong JS; Feng DT; Su C; Li H; Rao ZM; Lu ZM; Shi JS; Xu ZH
    Appl Environ Microbiol; 2023 Jun; 89(6):e0022023. PubMed ID: 37191513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrilase and its application as a 'green' catalyst.
    Singh R; Sharma R; Tewari N; ; Rawat DS
    Chem Biodivers; 2006 Dec; 3(12):1279-87. PubMed ID: 17193242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mining of Microbial Genomes for the Novel Sources of Nitrilases.
    Sharma N; Thakur N; Raj T; Savitri ; Bhalla TC
    Biomed Res Int; 2017; 2017():7039245. PubMed ID: 28497061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.