These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26894480)

  • 1. Monitoring of extracellular pH in young dental biofilms grown in vivo in the presence and absence of sucrose.
    Dige I; Baelum V; Nyvad B; Schlafer S
    J Oral Microbiol; 2016; 8():30390. PubMed ID: 26894480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4.
    Schlafer S; Garcia JE; Greve M; Raarup MK; Nyvad B; Dige I
    Appl Environ Microbiol; 2015 Feb; 81(4):1267-73. PubMed ID: 25501477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratiometric Imaging of Extracellular pH in Dental Biofilms.
    Schlafer S; Dige I
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow conditions.
    Schlafer S; Baelum V; Dige I
    J Microbiol Methods; 2018 Sep; 152():194-200. PubMed ID: 30144480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH landscapes in a novel five-species model of early dental biofilm.
    Schlafer S; Raarup MK; Meyer RL; Sutherland DS; Dige I; Nyengaard JR; Nyvad B
    PLoS One; 2011; 6(9):e25299. PubMed ID: 21966490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.
    Schlafer S; Ibsen CJ; Birkedal H; Nyvad B
    Caries Res; 2017; 51(1):26-33. PubMed ID: 27960182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A confocal microscopy based method to monitor extracellular pH in fungal biofilms.
    Schlafer S; Kamp A; Garcia JE
    FEMS Yeast Res; 2018 Aug; 18(5):. PubMed ID: 29684195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Extracellular pH in Cross-Kingdom Biofilms using Confocal Microscopy.
    Schlafer S; Frost Kristensen M
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence lectin binding analysis of carbohydrate components in dental biofilms grown in situ in the presence or absence of sucrose.
    Dige I; Paqué PN; Del Rey YC; Lund MB; Schramm A; Schlafer S
    Mol Oral Microbiol; 2022 Oct; 37(5):196-205. PubMed ID: 35960156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticaries effect of an antioxidant-rich apple concentrate on enamel in an experimental biofilm-demineralization model.
    Giacaman RA; Contzen MP; Yuri JA; Muñoz-Sandoval C
    J Appl Microbiol; 2014 Sep; 117(3):846-53. PubMed ID: 24903333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric imaging of extracellular pH in
    Kristensen MF; Frandsen Lau E; Schlafer S
    J Oral Microbiol; 2021; 13(1):1949427. PubMed ID: 34349890
    [No Abstract]   [Full Text] [Related]  

  • 12. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface.
    Xiao J; Hara AT; Kim D; Zero DT; Koo H; Hwang G
    Int J Oral Sci; 2017 Jun; 9(2):74-79. PubMed ID: 28452377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular DNA Contributes to Dental Biofilm Stability.
    Schlafer S; Meyer RL; Dige I; Regina VR
    Caries Res; 2017; 51(4):436-442. PubMed ID: 28728145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Organization of Dental Biofilm Formed in situ in the Presence of Sucrose Associated to Maltodextrin.
    Rezende G; Arthur RA; Lamers ML; Hashizume LN
    Braz Dent J; 2019; 30(1):36-42. PubMed ID: 30864645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine Improves pH Homeostasis via Metabolism and Microbiome Modulation.
    Agnello M; Cen L; Tran NC; Shi W; McLean JS; He X
    J Dent Res; 2017 Jul; 96(8):924-930. PubMed ID: 28486080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms.
    Hunter RC; Beveridge TJ
    Appl Environ Microbiol; 2005 May; 71(5):2501-10. PubMed ID: 15870340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate.
    Li Y; Burne RA
    Microbiology (Reading); 2001 Oct; 147(Pt 10):2841-2848. PubMed ID: 11577162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ anticariogenic activity of free fatty acids after sucrose exposure to oral biofilms formed on enamel.
    Giacaman RA; Valenzuela-Ramos R; Muñoz-Sandoval C
    Am J Dent; 2016 Apr; 29(2):81-6. PubMed ID: 27295865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D printed microfluidic flow-cell for microscopy analysis of in situ-grown biofilms.
    Kristensen MF; Leonhardt D; Neland MLB; Schlafer S
    J Microbiol Methods; 2020 Apr; 171():105876. PubMed ID: 32087186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streptococcus mutans extracellular DNA levels depend on the number of bacteria in a biofilm.
    Kim M; Jeon J; Kim J
    Sci Rep; 2018 Sep; 8(1):13313. PubMed ID: 30190485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.