These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26894480)

  • 41. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system.
    Shu M; Wong L; Miller JH; Sissons CH
    Arch Oral Biol; 2000 Jan; 45(1):27-40. PubMed ID: 10669090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbiota of plaque microcosm biofilms: effect of three times daily sucrose pulses in different simulated oral environments.
    Sissons CH; Anderson SA; Wong L; Coleman MJ; White DC
    Caries Res; 2007; 41(5):413-22. PubMed ID: 17713343
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Breastfeeding, Dental Biofilm Acidogenicity, and Early Childhood Caries.
    Neves PA; Ribeiro CC; Tenuta LM; Leitão TJ; Monteiro-Neto V; Nunes AM; Cury JA
    Caries Res; 2016; 50(3):319-24. PubMed ID: 27226212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cariogenicity of different commercially available bovine milk types in a biofilm caries model.
    Giacaman RA; Muñoz-Sandoval C
    Pediatr Dent; 2014; 36(1):1E-6E. PubMed ID: 24717697
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of sucrose in cariogenic dental biofilm formation--new insight.
    Paes Leme AF; Koo H; Bellato CM; Bedi G; Cury JA
    J Dent Res; 2006 Oct; 85(10):878-87. PubMed ID: 16998125
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plaque pH in caries-free and caries-active young individuals before and after frequent rinses with sucrose and urea solution.
    Hassan H; Lingström P; Carlén A
    Caries Res; 2015; 49(1):18-25. PubMed ID: 25300348
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of starvation and biofilm formation on acid resistance of Streptococcus mutans.
    Zhu M; Takenaka S; Sato M; Hoshino E
    Oral Microbiol Immunol; 2001 Feb; 16(1):24-7. PubMed ID: 11169135
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interfacial degradation of adhesive composite restorations mediated by oral biofilms and mechanical challenge in an extracted tooth model of secondary caries.
    Carrera CA; Li Y; Chen R; Aparicio C; Fok A; Rudney J
    J Dent; 2017 Nov; 66():62-70. PubMed ID: 28843960
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of Psidium cattleianum leaf extract on enamel demineralisation and dental biofilm composition in situ.
    Brighenti FL; Gaetti-Jardim E; Danelon M; Evangelista GV; Delbem AC
    Arch Oral Biol; 2012 Aug; 57(8):1034-40. PubMed ID: 22386130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Actinomyces naeslundii in initial dental biofilm formation.
    Dige I; Raarup MK; Nyengaard JR; Kilian M; Nyvad B
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2116-2126. PubMed ID: 19406899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterisation of a sucrose-independent in vitro biofilm model of supragingival plaque.
    Tsutsumi K; Maruyama M; Uchiyama A; Shibasaki K
    Oral Dis; 2018 Apr; 24(3):465-475. PubMed ID: 28898513
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Individual vitality pattern of in situ dental biofilms at different locations in the oral cavity.
    Arweiler NB; Hellwig E; Sculean A; Hein N; Auschill TM
    Caries Res; 2004; 38(5):442-7. PubMed ID: 15316188
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of frequency of sucrose exposure on dental biofilm composition and enamel demineralization in the presence of fluoride.
    Ccahuana-Vásquez RA; Tabchoury CP; Tenuta LM; Del Bel Cury AA; Vale GC; Cury JA
    Caries Res; 2007; 41(1):9-15. PubMed ID: 17167254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.
    Florez Salamanca EJ; Klein MI
    Mol Oral Microbiol; 2018 Apr; 33(2):181-193. PubMed ID: 29284195
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Correlation between the cariogenic response in biofilms generated from saliva of mother/child pairs.
    Azevedo MS; van de Sande FH; Maske TT; Signori C; Romano AR; Cenci MS
    Biofouling; 2014 Sep; 30(8):903-9. PubMed ID: 25184431
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization.
    Costa Oliveira BE; Cury JA; Ricomini Filho AP
    PLoS One; 2017; 12(7):e0181168. PubMed ID: 28715508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dental plaque as a biofilm: a pilot study of the effects of nutrients on plaque pH and dentin demineralization.
    Zaura E; ten Cate JM
    Caries Res; 2004; 38 Suppl 1():9-15. PubMed ID: 14685019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ratiometric Imaging of the in Situ pH Distribution of Biofilms by Use of Fluorescent Mesoporous Silica Nanosensors.
    Fulaz S; Hiebner D; Barros CHN; Devlin H; Vitale S; Quinn L; Casey E
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32679-32688. PubMed ID: 31418546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of urease gene expression by Streptococcus salivarius growing in biofilms.
    Li YH; Chen YY; Burne RA
    Environ Microbiol; 2000 Apr; 2(2):169-77. PubMed ID: 11220303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-fluoride toothpaste and deciduous enamel demineralization under biofilm accumulation and sucrose exposure.
    Cury JA; do Amaral RC; Tenuta LM; Del Bel Cury AA; Tabchoury CP
    Eur J Oral Sci; 2010 Aug; 118(4):370-5. PubMed ID: 20662910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.