BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26894568)

  • 1. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.
    Gao Y; Tahmasebi A; Dou J; Yu J
    Bioresour Technol; 2016 May; 207():276-84. PubMed ID: 26894568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.
    Chen C; Lu Z; Ma X; Long J; Peng Y; Hu L; Lu Q
    Bioresour Technol; 2013 Sep; 144():563-71. PubMed ID: 23890976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres.
    Tahmasebi A; Kassim MA; Yu J; Bhattacharya S
    Bioresour Technol; 2013 Dec; 150():15-27. PubMed ID: 24140946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA.
    Chen C; Ma X; He Y
    Bioresour Technol; 2012 Aug; 117():264-73. PubMed ID: 22617036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleaner co-combustion of lignite-biomass-waste blends by utilising inhibiting compounds of toxic emissions.
    Skodras G; Palladas A; Kaldis SP; Sakellaropoulos GP
    Chemosphere; 2007 Apr; 67(9):S191-7. PubMed ID: 17204304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.
    Zhou C; Liu G; Wang X; Qi C
    Bioresour Technol; 2016 Oct; 218():418-27. PubMed ID: 27393832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air impacts from three alternatives for producing JP-8 jet fuel.
    Kositkanawuth K; Gangupomu RH; Sattler ML; Dennis BH; MacDonnell FM; Billo R; Priest JW
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1182-95. PubMed ID: 23155864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emission characteristics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed.
    Toraman OY; Topal H; Bayat O; Atimtay AT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):973-86. PubMed ID: 15137713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogravimetric investigation of hydrochar-lignite co-combustion.
    Liu Z; Quek A; Kent Hoekman S; Srinivasan MP; Balasubramanian R
    Bioresour Technol; 2012 Nov; 123():646-52. PubMed ID: 22960124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal.
    Onenc S; Retschitzegger S; Evic N; Kienzl N; Yanik J
    Waste Manag; 2018 Jan; 71():192-199. PubMed ID: 29097128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxygen concentration on oxy-fuel combustion characteristic and interactions of coal gangue and pine sawdust.
    Zhang Y; Zhao J; Ma Z; Yang F; Cheng F
    Waste Manag; 2019 Mar; 87():288-294. PubMed ID: 31109528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NO and SO
    Yanik J; Duman G; Karlström O; Brink A
    J Environ Manage; 2018 Dec; 227():155-161. PubMed ID: 30176435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study on co-combustion of low rank coal semicoke and oil sludge by TG-FTIR.
    Zhao R; Qin J; Chen T; Wang L; Wu J
    Waste Manag; 2020 Oct; 116():91-99. PubMed ID: 32799100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.
    Guo F; Zhong Z
    Environ Pollut; 2018 Aug; 239():21-29. PubMed ID: 29635091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.
    Chen L; Bhattacharya S
    Environ Sci Technol; 2013 Feb; 47(3):1729-34. PubMed ID: 23301852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of artificial neural networks to co-combustion of hazelnut husk-lignite coal blends.
    Yıldız Z; Uzun H; Ceylan S; Topcu Y
    Bioresour Technol; 2016 Jan; 200():42-7. PubMed ID: 26476163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emission of typical pollutants (NO
    Moroń W; Ferens W; Wach J
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):50683-50695. PubMed ID: 33966162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.
    Roy B; Chen L; Bhattacharya S
    Environ Sci Technol; 2014 Dec; 48(24):14844-50. PubMed ID: 25402169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion.
    Konopa SL; Mulholland JA; Realff MJ; Lemieux PM
    J Air Waste Manag Assoc; 2008 Aug; 58(8):1070-6. PubMed ID: 18720656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.