These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 26895020)

  • 1. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models.
    Peters SA; Jones CR; Ungell AL; Hatley OJ
    Clin Pharmacokinet; 2016 Jun; 55(6):673-96. PubMed ID: 26895020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model.
    Darwich AS; Neuhoff S; Jamei M; Rostami-Hodjegan A
    Curr Drug Metab; 2010 Nov; 11(9):716-29. PubMed ID: 21189140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gut Wall Metabolism. Application of Pre-Clinical Models for the Prediction of Human Drug Absorption and First-Pass Elimination.
    Jones CR; Hatley OJ; Ungell AL; Hilgendorf C; Peters SA; Rostami-Hodjegan A
    AAPS J; 2016 May; 18(3):589-604. PubMed ID: 26964996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional Expression Levels of Drug Transporters and Metabolizing Enzymes along the Pig and Human Intestinal Tract and Comparison with Caco-2 Cells.
    Vaessen SF; van Lipzig MM; Pieters RH; Krul CA; Wortelboer HM; van de Steeg E
    Drug Metab Dispos; 2017 Apr; 45(4):353-360. PubMed ID: 28153842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of variations in the amounts of P-glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass.
    Bruyère A; Declèves X; Bouzom F; Ball K; Marques C; Treton X; Pocard M; Valleur P; Bouhnik Y; Panis Y; Scherrmann JM; Mouly S
    Mol Pharm; 2010 Oct; 7(5):1596-607. PubMed ID: 20604570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro Human Cell-Based Experimental Models for the Evaluation of Enteric Metabolism and Drug Interaction Potential of Drugs and Natural Products.
    Li AP
    Drug Metab Dispos; 2020 Oct; 48(10):980-992. PubMed ID: 32636209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: An intra-subject analysis.
    Fritz A; Busch D; Lapczuk J; Ostrowski M; Drozdzik M; Oswald S
    Basic Clin Pharmacol Toxicol; 2019 Mar; 124(3):245-255. PubMed ID: 30253071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility of Pooled Cryopreserved Human Enterocytes as an In vitro Model for Assessing Intestinal Clearance and Drug-Drug Interactions.
    Wong S; Doshi U; Vuong P; Liu N; Tay S; Le H; Kosaka M; Kenny JR; Li AP; Yan Z
    Drug Metab Lett; 2018; 12(1):3-13. PubMed ID: 29237391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles.
    Peters SA
    Clin Pharmacokinet; 2008; 47(4):245-59. PubMed ID: 18336054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting drug-drug interactions involving the inhibition of intestinal CYP3A4 and P-glycoprotein.
    Tachibana T; Kato M; Takano J; Sugiyama Y
    Curr Drug Metab; 2010 Nov; 11(9):762-77. PubMed ID: 21189139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nested enzyme-within-enterocyte (NEWE) turnover model for predicting dynamic drug and disease effects on the gut wall.
    Darwich AS; Burt HJ; Rostami-Hodjegan A
    Eur J Pharm Sci; 2019 Apr; 131():195-207. PubMed ID: 30776469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of an In Vitro System for Evaluating Intestinal Drug Disposition Using Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Cells].
    Iwao T
    Yakugaku Zasshi; 2018; 138(10):1241-1247. PubMed ID: 30270266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogeny of Small Intestinal Drug Transporters and Metabolizing Enzymes Based on Targeted Quantitative Proteomics.
    Kiss M; Mbasu R; Nicolaï J; Barnouin K; Kotian A; Mooij MG; Kist N; Wijnen RMH; Ungell AL; Cutler P; Russel FGM; de Wildt SN
    Drug Metab Dispos; 2021 Dec; 49(12):1038-1046. PubMed ID: 34548392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usefulness of Human Jejunal Spheroid-Derived Differentiated Intestinal Epithelial Cells for the Prediction of Intestinal Drug Absorption in Humans.
    Michiba K; Maeda K; Shimomura O; Miyazaki Y; Hashimoto S; Oda T; Kusuhara H
    Drug Metab Dispos; 2022 Mar; 50(3):204-213. PubMed ID: 34992074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methadone pharmacokinetics are independent of cytochrome P4503A (CYP3A) activity and gastrointestinal drug transport: insights from methadone interactions with ritonavir/indinavir.
    Kharasch ED; Hoffer C; Whittington D; Walker A; Bedynek PS
    Anesthesiology; 2009 Mar; 110(3):660-72. PubMed ID: 19225389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential role of intestinal first-pass metabolism in the prediction of drug-drug interactions.
    Galetin A; Gertz M; Houston JB
    Expert Opin Drug Metab Toxicol; 2008 Jul; 4(7):909-22. PubMed ID: 18624679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico modeling for the nonlinear absorption kinetics of UK-343,664: a P-gp and CYP3A4 substrate.
    Abuasal BS; Bolger MB; Walker DK; Kaddoumi A
    Mol Pharm; 2012 Mar; 9(3):492-504. PubMed ID: 22264132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice.
    van Waterschoot RA; Schinkel AH
    Pharmacol Rev; 2011 Jun; 63(2):390-410. PubMed ID: 21490128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetics and disposition of anlotinib, an oral tyrosine kinase inhibitor, in experimental animal species.
    Zhong CC; Chen F; Yang JL; Jia WW; Li L; Cheng C; Du FF; Zhang SP; Xie CY; Zhang NT; Olaleye OE; Wang FQ; Xu F; Lou LG; Chen DY; Niu W; Li C
    Acta Pharmacol Sin; 2018 Jun; 39(6):1048-1063. PubMed ID: 29620050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor.
    Kadono K; Akabane T; Tabata K; Gato K; Terashita S; Teramura T
    Drug Metab Dispos; 2010 Jul; 38(7):1230-7. PubMed ID: 20354105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.