BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26895095)

  • 1. Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell Evaluation.
    Cui Y; Wang X; Ren W; Liu J; Irudayaraj J
    ACS Nano; 2016 Mar; 10(3):3132-43. PubMed ID: 26895095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycerol-mediated nanostructure modification leading to improved transparency of porous polymeric scaffolds for high performance 3D cell imaging.
    Zhao S; Shen Z; Wang J; Li X; Zeng Y; Wang B; He Y; Du Y
    Biomacromolecules; 2014 Jul; 15(7):2521-31. PubMed ID: 24884229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially Resolved Spectroscopic Characterization of Nanostructured Films by Hyperspectral Dark-Field Microscopy.
    Liu Z; Cai C; Wu W; Cai X; Qi ZM
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43186-43196. PubMed ID: 34463092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Step Fast Tissue Clearing of Thick Mouse Brain Tissue for Multi-Dimensional High-Resolution Imaging.
    Ryu Y; Kim Y; Lim HR; Kim HJ; Park BS; Kim JG; Park SJ; Ha CM
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids.
    Costa EC; Silva DN; Moreira AF; Correia IJ
    Biotechnol Bioeng; 2019 Oct; 116(10):2742-2763. PubMed ID: 31282993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical clearing at cellular level.
    Kinnunen M; Bykov AV; Tuorila J; Haapalainen T; Karmenyan AV; Tuchin VV
    J Biomed Opt; 2014 Jul; 19(7):71409. PubMed ID: 24615672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing.
    Berke IM; Miola JP; David MA; Smith MK; Price C
    PLoS One; 2016; 11(3):e0150268. PubMed ID: 26930293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme catalysis enhanced dark-field imaging as a novel immunohistochemical method.
    Fan L; Tian Y; Yin R; Lou D; Zhang X; Wang M; Ma M; Luo S; Li S; Gu N; Zhang Y
    Nanoscale; 2016 Apr; 8(16):8553-8. PubMed ID: 26786242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging.
    Wang X; Cui Y; Irudayaraj J
    ACS Nano; 2015 Dec; 9(12):11924-32. PubMed ID: 26505210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale mapping of refractive index by using scattering-type scanning near-field optical microscopy.
    Tranca DE; Stanciu SG; Hristu R; Witgen BM; Stanciu GA
    Nanomedicine; 2018 Jan; 14(1):47-50. PubMed ID: 28887212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the intracellular refractive index and molecular interaction of gold nanoparticles in HeLa cells using single particle spectroscopy.
    Mohsin ASM; Salim MB
    Int J Nanomedicine; 2018; 13():6019-6028. PubMed ID: 30323589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells.
    Agnarsson B; Lundgren A; Gunnarsson A; Rabe M; Kunze A; Mapar M; Simonsson L; Bally M; Zhdanov VP; Höök F
    ACS Nano; 2015 Dec; 9(12):11849-62. PubMed ID: 26517791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen Nanobubble Tracking by Light Scattering in Single Cells and Tissues.
    Bhandari P; Wang X; Irudayaraj J
    ACS Nano; 2017 Mar; 11(3):2682-2688. PubMed ID: 28267921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical clearing of skin using flash lamp-induced enhancement of epidermal permeability.
    Tuchin VV; Altshuler GB; Gavrilova AA; Pravdin AB; Tabatadze D; Childs J; Yaroslavsky IV
    Lasers Surg Med; 2006 Oct; 38(9):824-36. PubMed ID: 17044094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing tissue-clearing conditions based on analysis of the critical factors affecting tissue-clearing procedures.
    Kim JH; Jang MJ; Choi J; Lee E; Song KD; Cho J; Kim KT; Cha HJ; Sun W
    Sci Rep; 2018 Aug; 8(1):12815. PubMed ID: 30143733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals.
    Susaki EA; Ueda HR
    Cell Chem Biol; 2016 Jan; 23(1):137-157. PubMed ID: 26933741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection.
    Zhou J; Gao PF; Zhang HZ; Lei G; Zheng LL; Liu H; Huang CZ
    Nanoscale; 2017 Mar; 9(13):4593-4600. PubMed ID: 28322387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications.
    Fairbairn N; Christofidou A; Kanaras AG; Newman TA; Muskens OL
    Phys Chem Chem Phys; 2013 Mar; 15(12):4163-8. PubMed ID: 23183927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells.
    Gu Z; Jing C; Ying YL; He P; Long YT
    Theranostics; 2015; 5(2):188-95. PubMed ID: 25553107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.