BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26895212)

  • 1. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.
    Hibbs JB; Vavrin Z; Cox JE
    Redox Biol; 2016 Aug; 8():271-84. PubMed ID: 26895212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of the non-oxidative route of the pentose phosphate pathway for supplying carbon to the purine-nucleotide pathway in Corynebacterium ammoniagenes.
    Kamada N; Yasuhara A; Ikeda M
    J Ind Microbiol Biotechnol; 2003 Feb; 30(2):129-32. PubMed ID: 12612788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide degradation and ribose salvage in yeast.
    Xu YF; Létisse F; Absalan F; Lu W; Kuznetsova E; Brown G; Caudy AA; Yakunin AF; Broach JR; Rabinowitz JD
    Mol Syst Biol; 2013 May; 9():665. PubMed ID: 23670538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations of the redox state, pentose pathway and glutathione metabolism in an acute porphyria model. Their impact on heme pathway.
    Faut M; Paiz A; San Martín de Viale LC; Mazzetti MB
    Exp Biol Med (Maywood); 2013 Feb; 238(2):133-43. PubMed ID: 23390166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.
    Pellny TK; Locato V; Vivancos PD; Markovic J; De Gara L; Pallardó FV; Foyer CH
    Mol Plant; 2009 May; 2(3):442-56. PubMed ID: 19825628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo synthesis of purine nucleotides in human peripheral blood leukocytes. Excessive activity of the pathway in hypoxanthine-guanine phosphoribosyltransferase deficiency.
    Brosh S; Boer P; Kupfer B; de Vries A; Sperling O
    J Clin Invest; 1976 Aug; 58(2):289-97. PubMed ID: 956368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pentose phosphates in nucleoside interconversion and catabolism.
    Tozzi MG; Camici M; Mascia L; Sgarrella F; Ipata PL
    FEBS J; 2006 Mar; 273(6):1089-101. PubMed ID: 16519676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site.
    Danielson UH; Jiang F; Hansson LO; Mannervik B
    Biochemistry; 1999 Jul; 38(29):9254-63. PubMed ID: 10413499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review.
    Wamelink MM; Struys EA; Jakobs C
    J Inherit Metab Dis; 2008 Dec; 31(6):703-17. PubMed ID: 18987987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic product-mediated stabilization of CdS quantum dots produced in situ: application for detection of reduced glutathione, NADPH, and glutathione reductase activity.
    Garai-Ibabe G; Saa L; Pavlov V
    Anal Chem; 2013 Jun; 85(11):5542-6. PubMed ID: 23656502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium.
    Sheeran FL; Rydström J; Shakhparonov MI; Pestov NB; Pepe S
    Biochim Biophys Acta; 2010; 1797(6-7):1138-48. PubMed ID: 20388492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH.
    Storey BT; Alvarez JG; Thompson KA
    Mol Reprod Dev; 1998 Apr; 49(4):400-7. PubMed ID: 9508091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Purine Biosynthesis Suppresses the Sensitivity of
    Seregina TA; Petrushanko IY; Zaripov PI; Shakulov RS; A Sklyarova S; Mitkevich VA; Makarov AA; Mironov AS
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm.
    Williams AC; Ford WC
    Biol Reprod; 2004 Oct; 71(4):1309-16. PubMed ID: 15189835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolism of purine nucleotides and the production of uric acid].
    Yamaoka T; Itakura M
    Nihon Rinsho; 1996 Dec; 54(12):3188-94. PubMed ID: 8976090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new strategy to improve the efficiency and sustainability of Candida parapsilosis catalyzing deracemization of (R,S)-1-phenyl-1,2-ethanediol under non-growing conditions: increase of NADPH availability.
    Nie Y; Xu Y; Hu QS; Xiao R
    J Microbiol Biotechnol; 2009 Jan; 19(1):65-71. PubMed ID: 19190410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defenses against oxidation in human erythrocytes: role of glutathione reductase in the activation of glucose decarboxylation by hemolytic drugs.
    Hohl RJ; Kennedy EJ; Frischer H
    J Lab Clin Med; 1991 Apr; 117(4):325-31. PubMed ID: 1901343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidative pentose phosphate pathway in the heart: regulation, physiological significance, and clinical implications.
    Zimmer HG
    Basic Res Cardiol; 1992; 87(4):303-16. PubMed ID: 1384463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.