These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 26895310)
1. Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films. Miller EM; Kroupa DM; Zhang J; Schulz P; Marshall AR; Kahn A; Lany S; Luther JM; Beard MC; Perkins CL; van de Lagemaat J ACS Nano; 2016 Mar; 10(3):3302-11. PubMed ID: 26895310 [TBL] [Abstract][Full Text] [Related]
2. Substrate-controlled band positions in CH₃NH₃PbI₃ perovskite films. Miller EM; Zhao Y; Mercado CC; Saha SK; Luther JM; Zhu K; Stevanović V; Perkins CL; van de Lagemaat J Phys Chem Chem Phys; 2014 Oct; 16(40):22122-30. PubMed ID: 25209217 [TBL] [Abstract][Full Text] [Related]
3. Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids. Choi JK; Jang S; Sohn H; Jeong HD J Am Chem Soc; 2009 Dec; 131(49):17894-900. PubMed ID: 19911790 [TBL] [Abstract][Full Text] [Related]
4. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals. Saha SK; Bera A; Pal AJ ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277 [TBL] [Abstract][Full Text] [Related]
5. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence. Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555 [TBL] [Abstract][Full Text] [Related]
6. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. Zhang J; Gao J; Miller EM; Luther JM; Beard MC ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705 [TBL] [Abstract][Full Text] [Related]
8. Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells. Lee CS; Larina L; Shin YM; Al-Ammar EA; Ahn BT Phys Chem Chem Phys; 2012 Apr; 14(14):4789-95. PubMed ID: 22382807 [TBL] [Abstract][Full Text] [Related]
9. The impact of chemical composition of halide surface ligands on the electronic structure and stability of lead sulfide quantum dot materials. Sloboda T; Svanström S; Johansson FOL; Bryngelsson E; García-Fernández A; Lindblad A; Cappel UB Phys Chem Chem Phys; 2022 May; 24(20):12645-12657. PubMed ID: 35579959 [TBL] [Abstract][Full Text] [Related]
10. Charge trapping in bright and dark states of coupled PbS quantum dot films. Gao J; Johnson JC ACS Nano; 2012 Apr; 6(4):3292-303. PubMed ID: 22462777 [TBL] [Abstract][Full Text] [Related]
11. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics. Zhang N; Neo DC; Tazawa Y; Li X; Assender HE; Compton RG; Watt AA ACS Appl Mater Interfaces; 2016 Aug; 8(33):21417-22. PubMed ID: 27421066 [TBL] [Abstract][Full Text] [Related]
12. Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se₂ Surfaces--Reason for Performance Leap? Handick E; Reinhard P; Alsmeier JH; Köhler L; Pianezzi F; Krause S; Gorgoi M; Ikenaga E; Koch N; Wilks RG; Buecheler S; Tiwari AN; Bär M ACS Appl Mater Interfaces; 2015 Dec; 7(49):27414-20. PubMed ID: 26633568 [TBL] [Abstract][Full Text] [Related]
13. Quantifying Geometric Strain at the PbS QD-TiO₂ Anode Interface and Its Effect on Electronic Structures. Trejo O; Roelofs KE; Xu S; Logar M; Sarangi R; Nordlund D; Dadlani AL; Kravec R; Dasgupta NP; Bent SF; Prinz FB Nano Lett; 2015 Dec; 15(12):7829-36. PubMed ID: 26554814 [TBL] [Abstract][Full Text] [Related]
14. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Gao J; Luther JM; Semonin OE; Ellingson RJ; Nozik AJ; Beard MC Nano Lett; 2011 Mar; 11(3):1002-8. PubMed ID: 21291196 [TBL] [Abstract][Full Text] [Related]
15. Impact of stoichiometry on the electronic structure of PbS quantum dots. Kim D; Kim DH; Lee JH; Grossman JC Phys Rev Lett; 2013 May; 110(19):196802. PubMed ID: 23705733 [TBL] [Abstract][Full Text] [Related]
16. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. Jasieniak J; Califano M; Watkins SE ACS Nano; 2011 Jul; 5(7):5888-902. PubMed ID: 21662980 [TBL] [Abstract][Full Text] [Related]
17. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control. Choi H; Song JH; Jang J; Mai XD; Kim S; Jeong S Nanoscale; 2015 Nov; 7(41):17473-81. PubMed ID: 26440646 [TBL] [Abstract][Full Text] [Related]
18. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration. Choi JY; Heo K; Cho KS; Hwang SW; Kim S; Lee SY Sci Rep; 2016 Nov; 6():36504. PubMed ID: 27812035 [TBL] [Abstract][Full Text] [Related]
19. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]