These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26895557)

  • 1. Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation.
    Gao Y; Cao D; Wu Y; Liu J; Zhang L
    Soft Matter; 2016 Mar; 12(12):3074-83. PubMed ID: 26895557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization.
    Gao Y; Wu Y; Liu J; Zhang L
    Soft Matter; 2016 Dec; 12(48):9738-9748. PubMed ID: 27869283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites.
    Gao Y; Cao D; Liu J; Shen J; Wu Y; Zhang L
    Phys Chem Chem Phys; 2015 Sep; 17(35):22959-68. PubMed ID: 26267833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percolation analysis of the electrical conductive network in a polymer nanocomposite by nanorod functionalization.
    Ma R; Mu G; Zhang H; Liu J; Gao Y; Zhao X; Zhang L
    RSC Adv; 2019 Nov; 9(62):36324-36333. PubMed ID: 35540620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites with polymer-grafted nanorods.
    Li F; Duan X; Zhang H; Li B; Liu J; Gao Y; Zhang L
    Phys Chem Chem Phys; 2018 Aug; 20(34):21822-21831. PubMed ID: 29987305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the electrical conductive network formation in nanorod filled polymer nanocomposites by tuning nanorod stiffness.
    Gao Y; Ma R; Zhang H; Liu J; Zhao X; Zhang L
    RSC Adv; 2018 Aug; 8(53):30248-30256. PubMed ID: 35546821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation.
    Gao Y; Liu J; Shen J; Zhang L; Guo Z; Cao D
    Phys Chem Chem Phys; 2014 Aug; 16(30):16039-48. PubMed ID: 24964005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of conductive network and properties of nanorod/polymer composite under tensile strain.
    Feng Y; Ning N; Zhang L; Tian M; Zou H; Mi J
    J Chem Phys; 2013 Jul; 139(2):024903. PubMed ID: 23862961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites by utilizing diblock copolymer-mediated nanoparticles.
    Gao Y; Duan X; Jiang P; Zhang H; Liu J; Wen S; Zhao X; Zhang L
    Soft Matter; 2019 Aug; 15(31):6331-6339. PubMed ID: 31271186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect in improving the electrical conductivity in polymer nanocomposites by mixing spherical and rod-shaped fillers.
    Qu F; Sun W; Li B; Li F; Gao Y; Zhao X; Zhang L
    Soft Matter; 2020 Dec; 16(46):10454-10462. PubMed ID: 33057553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Modeling and Simulation of Polymer Nanocomposites with Nanorod Fillers.
    Lu S; Wu Z; Jayaraman A
    J Phys Chem B; 2021 Mar; 125(9):2435-2449. PubMed ID: 33646794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Nanorod Physical Roughness on the Aggregation and Percolation of Nanorods in Polymer Nanocomposites.
    Lu S; Jayaraman A
    ACS Macro Lett; 2021 Nov; 10(11):1416-1422. PubMed ID: 35549008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of the rupture mechanism in nanorod filled polymer nanocomposites.
    Gao Y; Liu J; Shen J; Cao D; Zhang L
    Phys Chem Chem Phys; 2014 Sep; 16(34):18483-92. PubMed ID: 25072998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between dispersion and conductivity of polymer nanocomposites: a molecular dynamics study.
    Feng Y; Zou H; Tian M; Zhang L; Mi J
    J Phys Chem B; 2012 Nov; 116(43):13081-8. PubMed ID: 23057420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring nanorod alignment in a polymer matrix by elongational flow under confinement: simulation, experiments, and surface enhanced Raman scattering application.
    Park JH; Joo YL
    Soft Matter; 2014 May; 10(19):3494-505. PubMed ID: 24652583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation studies on the effect of entropic attraction on the electric conductivity in polymer nano-composites.
    Cho HW; Nam S; Kwon G; Kim H; Sung BJ
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5103-8. PubMed ID: 24757986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical and rheological percolation of polymer nanocomposites prepared with functionalized copper nanowires.
    Gelves GA; Lin B; Sundararaj U; Haber JA
    Nanotechnology; 2008 May; 19(21):215712. PubMed ID: 21730591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study.
    Shen J; Liu J; Gao Y; Li X; Zhang L
    Soft Matter; 2014 Jul; 10(28):5099-113. PubMed ID: 24906702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.
    Gao Y; Müller-Plathe F
    J Phys Chem B; 2016 Feb; 120(7):1336-46. PubMed ID: 26800434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed simulation of the role of functionalized polymer chains on the structural, dynamic and mechanical properties of polymer nanocomposites.
    Liu J; Shen J; Gao Y; Zhou H; Wu Y; Zhang L
    Soft Matter; 2014 Nov; 10(44):8971-84. PubMed ID: 25294566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.