These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 26896003)

  • 41. Comparison of Field Measurements to Methane Emissions Models at a New Landfill.
    De la Cruz FB; Green RB; Hater GR; Chanton JP; Thoma ED; Harvey TA; Barlaz MA
    Environ Sci Technol; 2016 Sep; 50(17):9432-41. PubMed ID: 27455372
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of fugitive methane and gas collection efficiency in Halton landfill in Ontario, Canada.
    Mohsen RA; Abbassi B; Zytner R
    Environ Monit Assess; 2020 May; 192(6):326. PubMed ID: 32363444
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Validation and error assessment of the mobile tracer gas dispersion method for measurement of fugitive emissions from area sources.
    Fredenslund AM; Rees-White TC; Beaven RP; Delre A; Finlayson A; Helmore J; Allen G; Scheutz C
    Waste Manag; 2019 Jan; 83():68-78. PubMed ID: 30514473
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficiency of gas collection systems at Danish landfills and implications for regulations.
    Duan Z; Kjeldsen P; Scheutz C
    Waste Manag; 2022 Feb; 139():269-278. PubMed ID: 34995854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development and implementation of a screening method to categorise the greenhouse gas mitigation potential of 91 landfills.
    Fredenslund AM; Mønster J; Kjeldsen P; Scheutz C
    Waste Manag; 2019 Mar; 87():915-923. PubMed ID: 29563053
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A robust method for estimating landfill methane emissions.
    Figueroa VK; Mackie KR; Guarriello N; Cooper CD
    J Air Waste Manag Assoc; 2009 Aug; 59(8):925-35. PubMed ID: 19728486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of seasonal parameters and their effects on FOD landfill gas modeling.
    Bruce N; Ng KTW; Vu HL
    Environ Monit Assess; 2018 Apr; 190(5):291. PubMed ID: 29667037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.
    Jeong S; Nam A; Yi SM; Kim JY
    Waste Manag; 2015 Feb; 36():197-203. PubMed ID: 25488731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generating CO(2)-credits through landfill in situ aeration.
    Ritzkowski M; Stegmann R
    Waste Manag; 2010 Apr; 30(4):702-6. PubMed ID: 20022235
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monitoring of methane emission from a landfill site in daily and hourly time scales using an automated gas sampling system.
    Izumoto S; Hamamoto S; Kawamoto K; Nagamori M; Nishimura T
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):24500-24506. PubMed ID: 30009359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mitigating fugitive methane emissions from closed landfills: A pilot-scale field study.
    Nelson B; Zytner RG; Dulac Y; Cabral AR
    Sci Total Environ; 2022 Dec; 851(Pt 2):158351. PubMed ID: 36049680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A statistical model for landfill surface emissions.
    Héroux M; Guy C; Millette D
    J Air Waste Manag Assoc; 2010 Feb; 60(2):219-28. PubMed ID: 20222535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A simple and rapid in situ method for measuring landfill gas emissions and methane oxidation rates in landfill covers.
    Zhan LT; Wu T; Feng S; Lan JW; Chen YM
    Waste Manag Res; 2020 May; 38(5):588-593. PubMed ID: 31856695
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Odor impact zones around landfills: Delineation based on atmospheric conditions and land use characteristics.
    Tansel B; Inanloo B
    Waste Manag; 2019 Apr; 88():39-47. PubMed ID: 31079649
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantification of multiple methane emission sources at landfills using a double tracer technique.
    Scheutz C; Samuelsson J; Fredenslund AM; Kjeldsen P
    Waste Manag; 2011 May; 31(5):1009-17. PubMed ID: 21345664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil.
    Schroth MH; Eugster W; Gómez KE; Gonzalez-Gil G; Niklaus PA; Oester P
    Waste Manag; 2012 May; 32(5):879-89. PubMed ID: 22143049
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation.
    Yao Y; Su Y; Wu Y; Liu W; He R
    J Hazard Mater; 2015; 283():871-9. PubMed ID: 25464331
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fugitive halocarbon emissions from working face of municipal solid waste landfills in China.
    Liu Y; Lu W; Dastyar W; Liu Y; Guo H; Fu X; Li H; Meng R; Zhao M; Wang H
    Waste Manag; 2017 Dec; 70():149-157. PubMed ID: 28917825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of modeling with empirical calculation of diffuse and fugitive methane emissions in a Spanish landfill.
    Sánchez C; de la Fuente MDM; Narros A; Del Peso I; Rodríguez E
    J Air Waste Manag Assoc; 2019 Mar; 69(3):362-372. PubMed ID: 30373487
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis.
    Aghdam EF; Fredenslund AM; Chanton J; Kjeldsen P; Scheutz C
    Waste Manag; 2018 Mar; 73():220-229. PubMed ID: 29249311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.