These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 26896182)

  • 21. The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate.
    Sánchez Mesa JA; Galán C; Hervás C
    Int J Biometeorol; 2005 Jul; 49(6):355-62. PubMed ID: 15789221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biometeorological and autoregressive indices for predicting olive pollen intensity.
    Oteros J; García-Mozo H; Hervás C; Galán C
    Int J Biometeorol; 2013 Mar; 57(2):307-16. PubMed ID: 22660969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Airborne allergenic pollen in natural areas: Hornachuelos Natural Park, Cordoba, southern Spain.
    Garcia-Mozo H; Dominguez-Vilches E; Galan C
    Ann Agric Environ Med; 2007; 14(1):63-9. PubMed ID: 17655179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term trends and influence of climate and land-use changes on pollen profiles of a Mediterranean oak forest.
    López-Orozco R; García-Mozo H; Oteros J; Galán C
    Sci Total Environ; 2023 Nov; 897():165400. PubMed ID: 37423282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding hourly patterns of Olea pollen concentrations as tool for the environmental impact assessment.
    Fernández-Rodríguez S; Maya-Manzano JM; Colín AM; Pecero-Casimiro R; Buters J; Oteros J
    Sci Total Environ; 2020 Sep; 736():139363. PubMed ID: 32485367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenological changes in olive (Ola europaea L.) reproductive cycle in southern Spain due to climate change.
    Garcia-Mozo H; Oteros J; Galan C
    Ann Agric Environ Med; 2015; 22(3):421-8. PubMed ID: 26403107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Airborne castanea pollen forecasting model for ecological and allergological implementation.
    Astray G; Fernández-González M; Rodríguez-Rajo FJ; López D; Mejuto JC
    Sci Total Environ; 2016 Apr; 548-549():110-121. PubMed ID: 26802339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk.
    Rojo J; Rapp A; Lara B; Sabariego S; Fernández-González F; Pérez-Badia R
    Environ Monit Assess; 2016 Mar; 188(3):130. PubMed ID: 26832913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A three-year aeropalynological study in Estepona (southern Spain).
    Recio M; Del Mar Trigo M; Toro F; Docampo S; Garcia-Gonzalez J; Cabezudo B
    Ann Agric Environ Med; 2006; 13(2):201-7. PubMed ID: 17195992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatiotemporal analysis of olive flowering using geostatistical techniques.
    Rojo J; Pérez-Badia R
    Sci Total Environ; 2015 Feb; 505():860-9. PubMed ID: 25461089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atmospheric pollutants and their association with olive and grass aeroallergen concentrations in Córdoba (Spain).
    Plaza MP; Alcázar P; Oteros J; Galán C
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45447-45459. PubMed ID: 32789634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.
    Rojo J; Rivero R; Romero-Morte J; Fernández-González F; Pérez-Badia R
    Int J Biometeorol; 2017 Feb; 61(2):335-348. PubMed ID: 27492630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seasonal and intradiurnal variation of airborne pollen concentrations in Bodrum, SW Turkey.
    Tosunoglu A; Bicakci A
    Environ Monit Assess; 2015 Apr; 187(4):167. PubMed ID: 25750068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Projections of the start of the airborne pollen season in Barcelona (NE Iberian Peninsula) over the 21st century.
    Alarcón M; Casas-Castillo MDC; Rodríguez-Solà R; Periago C; Belmonte J
    Sci Total Environ; 2024 Aug; 937():173363. PubMed ID: 38795995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City.
    Ríos B; Torres-Jardón R; Ramírez-Arriaga E; Martínez-Bernal A; Rosas I
    Int J Biometeorol; 2016 May; 60(5):771-87. PubMed ID: 26431700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom.
    Smith M; Emberlin J
    Clin Exp Allergy; 2005 Oct; 35(10):1400-6. PubMed ID: 16238802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain.
    Galán C; García-Mozo H; Cariñanos P; Alcázar P; Domínguez-Vilches E
    Int J Biometeorol; 2001 Feb; 45(1):8-12. PubMed ID: 11411416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios.
    Cariñanos P; Alcázar P; Galán C; Domínguez E
    Sci Total Environ; 2014 Feb; 470-471():480-7. PubMed ID: 24176695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between airborne pollen assemblages and major meteorological parameters in Zhanjiang, South China.
    Bishan C; Bing L; Chixin C; Junxia S; Shulin Z; Cailang L; Siqiao Y; Chuanxiu L
    PLoS One; 2020; 15(10):e0240160. PubMed ID: 33027306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain.
    Galán C; Cariñanos P; García-Mazo H; Alcázar P; Domínguez-Vilches E
    Int J Biometeorol; 2001 Jul; 45(2):59-63. PubMed ID: 11513048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.