These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26896315)

  • 1. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.
    Miyawaki O; Dozen M; Hirota K
    J Biosci Bioeng; 2016 Aug; 122(2):203-7. PubMed ID: 26896315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution thermodynamic approach to analyze protein stability in aqueous solutions.
    Miyawaki O
    Biochim Biophys Acta Proteins Proteom; 2019 Nov; 1867(11):140256. PubMed ID: 31352058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic analysis of alcohol effect on thermal stability of proteins.
    Miyawaki O; Tatsuno M
    J Biosci Bioeng; 2011 Feb; 111(2):198-203. PubMed ID: 20947421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of water activity and aqueous solvent ordering on thermal stability of lysozyme, alpha-chymotrypsinogen A, and alcohol dehydrogenase.
    Matsue S; Fujii T; Miyawaki O
    Int J Biol Macromol; 2001 Jun; 28(5):343-9. PubMed ID: 11325420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration.
    Makhatadze GI; Privalov PL
    J Mol Biol; 1993 Jul; 232(2):639-59. PubMed ID: 8393940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration and heat stability effects on protein unfolding.
    Oobatake M; Ooi T
    Prog Biophys Mol Biol; 1993; 59(3):237-84. PubMed ID: 8441810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of hydrophobic hydration in protein stability: a 3D water-explicit protein model exhibiting cold and heat denaturation.
    Matysiak S; Debenedetti PG; Rossky PJ
    J Phys Chem B; 2012 Jul; 116(28):8095-104. PubMed ID: 22725973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration state change of proteins upon unfolding in sugar solutions.
    Miyawaki O
    Biochim Biophys Acta; 2007 Jul; 1774(7):928-35. PubMed ID: 17581805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signatures of protein thermal denaturation and local hydrophobicity in domain specific hydration behavior: a comparative molecular dynamics study.
    Chatterjee P; Sengupta N
    Mol Biosyst; 2016 Apr; 12(4):1139-50. PubMed ID: 26876051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of highly simplified BPTIs provide insights into hydration-driven increase of unfolding enthalpy.
    Islam MM; Yohda M; Kidokoro SI; Kuroda Y
    Sci Rep; 2017 Mar; 7():41205. PubMed ID: 28266637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical unfolding of chicken villin headpiece in aqueous dimethyl sulfoxide solution: cosolvent concentration dependence, pathway, and microscopic mechanism.
    Roy S; Bagchi B
    J Phys Chem B; 2013 Apr; 117(16):4488-502. PubMed ID: 23163289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal breaking of spanning water networks in the hydration shell of proteins.
    Brovchenko I; Krukau A; Smolin N; Oleinikova A; Geiger A; Winter R
    J Chem Phys; 2005 Dec; 123(22):224905. PubMed ID: 16375508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue Specific Interaction of an Unfolded Protein with Solvents in Mixed Water-Ethanol Solutions: A Combined Molecular Dynamics and ONIOM Study.
    Mohanta D; Santra S; Reddy GN; Giri S; Jana M
    J Phys Chem A; 2017 Aug; 121(32):6172-6186. PubMed ID: 28726407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic analysis of osmolyte effect on thermal stability of ribonuclease A in terms of water activity.
    Miyawaki O; Dozen M; Nomura K
    Biophys Chem; 2014 Jan; 185():19-24. PubMed ID: 24292629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Globular Protein Thermal Stability in Aqueous Formulations by the Positively Charged Amino Acid Excipients.
    Platts L; Darby SJ; Falconer RJ
    J Pharm Sci; 2016 Dec; 105(12):3532-3536. PubMed ID: 27776770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of urea-induced protein unfolding: a lesson from bovine β-lactoglobulin.
    Eberini I; Emerson A; Sensi C; Ragona L; Ricchiuto P; Pedretti A; Gianazza E; Tramontano A
    J Mol Graph Model; 2011 Sep; 30():24-30. PubMed ID: 21724434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hydrated water on protein unfolding.
    Ooi T; Oobatake M
    J Biochem; 1988 Jan; 103(1):114-20. PubMed ID: 3360751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A probabilistic approach to the effect of water hydrogen bonds on the kinetics of protein folding and protein denaturation.
    Djikaev YS; Ruckenstein E
    Adv Colloid Interface Sci; 2010 Feb; 154(1-2):77-90. PubMed ID: 20163782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein.
    Miao Y; Yi Z; Glass DC; Hong L; Tyagi M; Baudry J; Jain N; Smith JC
    J Am Chem Soc; 2012 Dec; 134(48):19576-9. PubMed ID: 23140218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.
    Dagade DH; Madkar KR; Shinde SP; Barge SS
    J Phys Chem B; 2013 Jan; 117(4):1031-43. PubMed ID: 23293839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.