BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 26896655)

  • 1. Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold.
    Wang H; Wu G; Zhang J; Zhou K; Yin B; Su X; Qiu G; Yang G; Zhang X; Zhou G; Wu Z
    Colloids Surf B Biointerfaces; 2016 May; 141():491-498. PubMed ID: 26896655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of bone repair mediated by recombination BMP-2/ recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite.
    Zeng J; Xiong S; Ding L; Zhou J; Li J; Qiu P; Liao X; Xiong L; Long Z; Liu S
    Life Sci; 2019 Oct; 234():116743. PubMed ID: 31408660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation.
    Parry JA; Olthof MG; Shogren KL; Dadsetan M; Van Wijnen A; Yaszemski M; Kakar S
    Tissue Eng Part A; 2017 Apr; 23(7-8):359-365. PubMed ID: 28081675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: Design and characterization.
    Dou DD; Zhou G; Liu HW; Zhang J; Liu ML; Xiao XF; Fei JJ; Guan XL; Fan YB
    Int J Biol Macromol; 2019 Feb; 123():622-628. PubMed ID: 30447364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.
    Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ
    Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect.
    Tang W; Lin D; Yu Y; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Mar; 32():309-323. PubMed ID: 26689464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan/nHAC/PLGA microsphere vehicle for sustained release of rhBMP-2 and its derived synthetic oligopeptide for bone regeneration.
    Ji Y; Wang M; Liu W; Chen C; Cui W; Sun T; Feng Q; Guo X
    J Biomed Mater Res A; 2017 Jun; 105(6):1593-1606. PubMed ID: 27862940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2.
    Niu X; Feng Q; Wang M; Guo X; Zheng Q
    J Control Release; 2009 Mar; 134(2):111-7. PubMed ID: 19100794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.
    Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z
    Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model.
    Liu Y; Lu Y; Tian X; Cui G; Zhao Y; Yang Q; Yu S; Xing G; Zhang B
    Biomaterials; 2009 Oct; 30(31):6276-85. PubMed ID: 19683811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental bone regeneration using rhBMP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model.
    Hou J; Wang J; Cao L; Qian X; Xing W; Lu J; Liu C
    Biomed Mater; 2012 Jun; 7(3):035002. PubMed ID: 22358865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a Novel HA/ZrO2-Based Porous Bioceramic Artificial Vertebral Body Combined with a rhBMP-2/Chitosan Slow-Release Hydrogel.
    Shi Y; Quan R; Xie S; Li Q; Cao G; Zhuang W; Zhang L; Shao R; Yang D
    PLoS One; 2016; 11(7):e0157698. PubMed ID: 27400197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration.
    Quinlan E; Thompson EM; Matsiko A; O'Brien FJ; López-Noriega A
    J Control Release; 2015 Jun; 207():112-9. PubMed ID: 25817394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation.
    Liu HW; Chen CH; Tsai CL; Hsiue GH
    Bone; 2006 Oct; 39(4):825-36. PubMed ID: 16782421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ controlled release of rhBMP-2 in gelatin-coated 3D porous poly(ε-caprolactone) scaffolds for homogeneous bone tissue formation.
    Zhang Q; Tan K; Zhang Y; Ye Z; Tan WS; Lang M
    Biomacromolecules; 2014 Jan; 15(1):84-94. PubMed ID: 24266740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect.
    Shim JH; Kim SE; Park JY; Kundu J; Kim SW; Kang SS; Cho DW
    Tissue Eng Part A; 2014 Jul; 20(13-14):1980-92. PubMed ID: 24517081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Siliceous mesostructured cellular foams/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite biomaterials for bone regeneration.
    Yang S; Xu S; Zhou P; Wang J; Tan H; Liu Y; Tang T; Liu C
    Int J Nanomedicine; 2014; 9():4795-807. PubMed ID: 25364243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.