These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26896862)

  • 1. Maximum-biomass prediction of homofermentative Lactobacillus.
    Cui S; Zhao J; Liu X; Chen YQ; Zhang H; Chen W
    J Biosci Bioeng; 2016 Jul; 122(1):52-7. PubMed ID: 26896862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum-biomass concentration prediction for Bifidobacteria in the pH-controlled fed-batch culture.
    Cui SM; Zhao JX; Liu XM; Chen YQ; Zhang H; Chen W
    Lett Appl Microbiol; 2016 Mar; 62(3):256-63. PubMed ID: 26678246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of L(+)-lactic acid production from cassava wastewater by Lactobacillus rhamnosus B 103.
    Coelho LF; Bolner de Lima CJ; Bernardo MP; Alvarez GM; Contiero J
    J Sci Food Agric; 2010 Aug; 90(11):1944-50. PubMed ID: 20564419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated production of lactic acid and biomass on distillery stillage.
    Djukić-Vuković AP; Mojović LV; Vukašinović-Sekulić MS; Nikolić SB; Pejin JD
    Bioprocess Biosyst Eng; 2013 Sep; 36(9):1157-64. PubMed ID: 23114502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus.
    Nancib A; Nancib N; Boubendir A; Boudrant J
    Braz J Microbiol; 2015; 46(3):893-902. PubMed ID: 26413076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M.
    Bergmaier D; Champagne CP; Lacroix C
    J Appl Microbiol; 2003; 95(5):1049-57. PubMed ID: 14633034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid production by oral strains of Candida albicans and lactobacilli.
    Klinke T; Kneist S; de Soet JJ; Kuhlisch E; Mauersberger S; Forster A; Klimm W
    Caries Res; 2009; 43(2):83-91. PubMed ID: 19246906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.
    Djukić-Vuković AP; Mojović LV; Jokić BM; Nikolić SB; Pejin JD
    Bioresour Technol; 2013 May; 135():454-8. PubMed ID: 23186681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival and Growth of Probiotic Lactic Acid Bacteria in Refrigerated Pickle Products.
    Fan S; Breidt F; Price R; Pérez-Díaz I
    J Food Sci; 2017 Jan; 82(1):167-173. PubMed ID: 27984668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Not only osmoprotectant: betaine increased lactate dehydrogenase activity and L-lactate production in lactobacilli.
    Zou H; Wu Z; Xian M; Liu H; Cheng T; Cao Y
    Bioresour Technol; 2013 Nov; 148():591-5. PubMed ID: 24035452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional properties of Lactobacillus strains isolated from kimchi.
    Lee H; Yoon H; Ji Y; Kim H; Park H; Lee J; Shin H; Holzapfel W
    Int J Food Microbiol; 2011 Jan; 145(1):155-61. PubMed ID: 21215484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of different fermentation parameters on L-lactic acid production from liquid distillery stillage.
    Djukić-Vuković AP; Mojović LV; Vukašinović-Sekulić MS; Rakin MB; Nikolić SB; Pejin JD; Bulatović ML
    Food Chem; 2012 Sep; 134(2):1038-43. PubMed ID: 23107725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of L: -Lactic Acid Production under Glucose Feedback Controlled Culture by Lactobacillus rhamnosus.
    Li Z; Lu J; Zhao L; Xiao K; Tan T
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1762–7. PubMed ID: 20393886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a pH feedback-controlled substrate feeding method in lactic acid production.
    Zhang Y; Cong W; Shi S
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2149-56. PubMed ID: 20503104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linoleic acid inhibits Lactobacillus activity by destroying cell membrane and affecting normal metabolism.
    Lv H; Ren D; Yan W; Wang Y; Liu H; Shen M
    J Sci Food Agric; 2020 Mar; 100(5):2057-2064. PubMed ID: 31875968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates.
    Charalampopoulos D; Pandiella SS; Webb C
    J Appl Microbiol; 2002; 92(5):851-9. PubMed ID: 11972688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of textile dyeing wastewater by biomass of Lactobacillus: Lactobacillus 12 and Lactobacillus rhamnosus.
    Sayilgan E; Cakmakci O
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1556-64. PubMed ID: 22684899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactobacillus species: taxonomic complexity and controversial susceptibilities.
    Goldstein EJ; Tyrrell KL; Citron DM
    Clin Infect Dis; 2015 May; 60 Suppl 2():S98-107. PubMed ID: 25922408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste.
    Bernardo MP; Coelho LF; Sass DC; Contiero J
    Braz J Microbiol; 2016; 47(3):640-6. PubMed ID: 27266630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of lactate and acetate by Lactobacillus coryniformis subsp. torquens DSM 20004(T) in comparison with Lactobacillus amylovorus DSM 20531(T).
    Slavica A; Trontel A; Jelovac N; Kosovec Ž; Šantek B; Novak S
    J Biotechnol; 2015 May; 202():50-9. PubMed ID: 25617683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.