These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 26897537)

  • 1. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.
    Wu Y; Wang L; Guo B; Shao Y; Ma PX
    Biomaterials; 2016 May; 87():18-31. PubMed ID: 26897537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells.
    Wu Y; Wang L; Hu T; Ma PX; Guo B
    J Colloid Interface Sci; 2018 May; 518():252-262. PubMed ID: 29471202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peripheral Nerve Regeneration Through Hydrogel-Enriched Chitosan Conduits Containing Engineered Schwann Cells for Drug Delivery.
    Meyer C; Wrobel S; Raimondo S; Rochkind S; Heimann C; Shahar A; Ziv-Polat O; Geuna S; Grothe C; Haastert-Talini K
    Cell Transplant; 2016; 25(1):159-82. PubMed ID: 25876520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration.
    Li R; Li D; Wu C; Ye L; Wu Y; Yuan Y; Yang S; Xie L; Mao Y; Jiang T; Li Y; Wang J; Zhang H; Li X; Xiao J
    Theranostics; 2020; 10(4):1649-1677. PubMed ID: 32042328
    [No Abstract]   [Full Text] [Related]  

  • 6. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.
    Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M
    Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Schwann cell-specific proteins and low-molecular-weight neurofilament protein during regeneration of sciatic nerve treated with neurotrophin-4.
    Yin Q; Kemp GJ; Yu LG; Wagstaff SC; Frostick SP
    Neuroscience; 2001; 105(3):779-83. PubMed ID: 11516841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.
    Huang J; Hu X; Lu L; Ye Z; Zhang Q; Luo Z
    J Biomed Mater Res A; 2010 Apr; 93(1):164-74. PubMed ID: 19536828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of biomimetic micro-patterned device incorporated with neurotrophic gradient and supportive Schwann cells for the applications in neural tissue engineering.
    Yeh CW; Wang LW; Wu HC; Hsieh YK; Wang J; Chen MH; Wang TW
    Biofabrication; 2017 Feb; 9(1):015024. PubMed ID: 28169834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micropatterned biodegradable polyesters clicked with CQAASIKVAV promote cell alignment, directional migration, and neurite outgrowth.
    Zhang D; Wu S; Feng J; Duan Y; Xing D; Gao C
    Acta Biomater; 2018 Jul; 74():143-155. PubMed ID: 29768188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of glial growth factor and Schwann cells in a bioresorbable guidance channel on peripheral nerve regeneration.
    Bryan DJ; Holway AH; Wang KK; Silva AE; Trantolo DJ; Wise D; Summerhayes IC
    Tissue Eng; 2000 Apr; 6(2):129-38. PubMed ID: 10941208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering.
    Bettinger CJ; Bruggeman JP; Misra A; Borenstein JT; Langer R
    Biomaterials; 2009 Jun; 30(17):3050-7. PubMed ID: 19286252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplementation of acellular nerve grafts with skin derived precursor cells promotes peripheral nerve regeneration.
    Walsh S; Biernaskie J; Kemp SW; Midha R
    Neuroscience; 2009 Dec; 164(3):1097-107. PubMed ID: 19737602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultures of Schwann-like cells differentiated from adipose-derived stem cells on PDMS/MWNT sheets as a scaffold for peripheral nerve regeneration.
    Han IH; Sun F; Choi YJ; Zou F; Nam KH; Cho WH; Choi BK; Song GS; Koh K; Lee J
    J Biomed Mater Res A; 2015 Nov; 103(11):3642-8. PubMed ID: 25903927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The beneficial effect of chitooligosaccharides on cell behavior and function of primary Schwann cells is accompanied by up-regulation of adhesion proteins and neurotrophins.
    Jiang M; Cheng Q; Su W; Wang C; Yang Y; Cao Z; Ding F
    Neurochem Res; 2014 Nov; 39(11):2047-57. PubMed ID: 25119164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A laminin-2-derived peptide promotes early-stage peripheral nerve regeneration in a dual-component artificial nerve graft.
    Seo SY; Min SK; Bae HK; Roh D; Kang HK; Roh S; Lee S; Chun GS; Chung DJ; Min BM
    J Tissue Eng Regen Med; 2013 Oct; 7(10):788-800. PubMed ID: 22438104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric Conductivity on Aligned Nanofibers Facilitates the Transdifferentiation of Mesenchymal Stem Cells into Schwann Cells and Regeneration of Injured Peripheral Nerve.
    Hu X; Wang X; Xu Y; Li L; Liu J; He Y; Zou Y; Yu L; Qiu X; Guo J
    Adv Healthc Mater; 2020 Jun; 9(11):e1901570. PubMed ID: 32338461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Biodegradable Conductive Hydrogel Regulating Microenvironment for Stem Cell Therapy Enhances the Nerve Tissue Repair.
    Xu C; Wu P; Yang K; Mu C; Li B; Li X; Wang Z; Liu Z; Wang X; Luo Z
    Small; 2024 Jun; 20(23):e2309793. PubMed ID: 38148305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrical versus Random β-TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behavior.
    Sweet L; Kang Y; Czisch C; Witek L; Shi Y; Smay J; Plant GW; Yang Y
    PLoS One; 2015; 10(10):e0139820. PubMed ID: 26444999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.