BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26897612)

  • 1. Estimating mercury emissions resulting from wildfire in forests of the Western United States.
    Webster JP; Kane TJ; Obrist D; Ryan JN; Aiken GR
    Sci Total Environ; 2016 Oct; 568():578-586. PubMed ID: 26897612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging investigator series: the effect of wildfire on streamwater mercury and organic carbon in a forested watershed in the southeastern United States.
    Jensen AM; Scanlon TM; Riscassi AL
    Environ Sci Process Impacts; 2017 Dec; 19(12):1505-1517. PubMed ID: 29147694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire.
    Engle MA; Sexauer Gustin M; Johnson DW; Murphy JF; Miller WW; Walker RF; Wright J; Markee M
    Sci Total Environ; 2006 Aug; 367(1):222-33. PubMed ID: 16406491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity.
    Obrist D; Pearson C; Webster J; Kane T; Lin CJ; Aiken GR; Alpers CN
    Sci Total Environ; 2016 Oct; 568():522-535. PubMed ID: 26775833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of mercury emissions from the forest floor of a pine plantation during a wildfire in central Portugal.
    Vieira AMD; Vaňková M; Campos I; Trubač J; Baieta R; Mihaljevič M
    Environ Monit Assess; 2022 Sep; 194(10):755. PubMed ID: 36083387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury Pollution in the Arctic from Wildfires: Source Attribution for the 2000s.
    Kumar A; Wu S
    Environ Sci Technol; 2019 Oct; 53(19):11269-11275. PubMed ID: 31479246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire.
    Homann PS; Darbyshire RL; Bormann BT; Morrissette BA
    Environ Sci Technol; 2015 Nov; 49(21):12714-22. PubMed ID: 26485585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of forest fire on the mercury stable isotope composition in litter and soil in the Amazon.
    Richter L; Amouroux D; Tessier E; Fostier AH
    Chemosphere; 2023 Oct; 339():139779. PubMed ID: 37567261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution inventory of mercury emissions from biomass burning in tropical continents during 2001-2017.
    Shi Y; Zhao A; Matsunaga T; Yamaguchi Y; Zang S; Li Z; Yu T; Gu X
    Sci Total Environ; 2019 Feb; 653():638-648. PubMed ID: 30759589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury storage in surface soils in a central Washington forest and estimated release during the 2001 Rex Creek Fire.
    Biswas A; Blum JD; Keeler GJ
    Sci Total Environ; 2008 Oct; 404(1):129-38. PubMed ID: 18640702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools.
    Mitchell CP; Kolka RK; Fraver S
    Environ Sci Technol; 2012 Aug; 46(15):7963-70. PubMed ID: 22747193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: a field manipulation experiment.
    Mazur M; Mitchell CPJ; Eckley CS; Eggert SL; Kolka RK; Sebestyen SD; Swain EB
    Sci Total Environ; 2014 Oct; 496():678-687. PubMed ID: 24993512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential wildfire effects on mercury remobilization from topsoils and biomass in a smelter-polluted semi-arid area.
    Tuhý M; Rohovec J; Matoušková Š; Mihaljevič M; Kříbek B; Vaněk A; Mapani B; Göttlicher J; Steininger R; Majzlan J; Ettler V
    Chemosphere; 2020 May; 247():125972. PubMed ID: 32069734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prioritizing forest fuels treatments based on the probability of high-severity fire restores adaptive capacity in Sierran forests.
    Krofcheck DJ; Hurteau MD; Scheller RM; Loudermilk EL
    Glob Chang Biol; 2018 Feb; 24(2):729-737. PubMed ID: 28940527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boreal Forests Sequester Large Amounts of Mercury over Millennial Time Scales in the Absence of Wildfire.
    Giesler R; Clemmensen KE; Wardle DA; Klaminder J; Bindler R
    Environ Sci Technol; 2017 Mar; 51(5):2621-2627. PubMed ID: 28157285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.
    Stevens-Rumann C; Morgan P
    Ecol Appl; 2016 Sep; 26(6):1842-1853. PubMed ID: 27755710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management.
    Kelly J; Ibáñez TS; Santín C; Doerr SH; Nilsson MC; Holst T; Lindroth A; Kljun N
    Glob Chang Biol; 2021 Sep; 27(17):4181-4195. PubMed ID: 34028945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deforestation and cultivation mobilize mercury from topsoil.
    Gamby RL; Hammerschmidt CR; Costello DM; Lamborg CH; Runkle JR
    Sci Total Environ; 2015 Nov; 532():467-73. PubMed ID: 26100725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury distribution across 14 U.S. Forests. Part I: spatial patterns of concentrations in biomass, litter, and soils.
    Obrist D; Johnson DW; Lindberg SE; Luo Y; Hararuk O; Bracho R; Battles JJ; Dail DB; Edmonds RL; Monson RK; Ollinger SV; Pallardy SG; Pregitzer KS; Todd DE
    Environ Sci Technol; 2011 May; 45(9):3974-81. PubMed ID: 21473582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.