BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26898266)

  • 1. Multi-loci diagnosis of acute lymphoblastic leukaemia with high-throughput sequencing and bioinformatics analysis.
    Ferret Y; Caillault A; Sebda S; Duez M; Grardel N; Duployez N; Villenet C; Figeac M; Preudhomme C; Salson M; Giraud M
    Br J Haematol; 2016 May; 173(3):413-20. PubMed ID: 26898266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput sequencing in acute lymphoblastic leukemia: Follow-up of minimal residual disease and emergence of new clones.
    Salson M; Giraud M; Caillault A; Grardel N; Duployez N; Ferret Y; Duez M; Herbert R; Rocher T; Sebda S; Quief S; Villenet C; Figeac M; Preudhomme C
    Leuk Res; 2017 Feb; 53():1-7. PubMed ID: 27930944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study.
    Brüggemann M; Kotrová M; Knecht H; Bartram J; Boudjogrha M; Bystry V; Fazio G; Froňková E; Giraud M; Grioni A; Hancock J; Herrmann D; Jiménez C; Krejci A; Moppett J; Reigl T; Salson M; Scheijen B; Schwarz M; Songia S; Svaton M; van Dongen JJM; Villarese P; Wakeman S; Wright G; Cazzaniga G; Davi F; García-Sanz R; Gonzalez D; Groenen PJTA; Hummel M; Macintyre EA; Stamatopoulos K; Pott C; Trka J; Darzentas N; Langerak AW;
    Leukemia; 2019 Sep; 33(9):2241-2253. PubMed ID: 31243313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring.
    Germano G; del Giudice L; Palatron S; Giarin E; Cazzaniga G; Biondi A; Basso G
    Leukemia; 2003 Aug; 17(8):1573-82. PubMed ID: 12886245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing.
    Giraud M; Salson M; Duez M; Villenet C; Quief S; Caillault A; Grardel N; Roumier C; Preudhomme C; Figeac M
    BMC Genomics; 2014 May; 15(1):409. PubMed ID: 24885090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Next-Generation Sequencing of Immunoglobulin and T-Cell Receptor Gene Recombinations for MRD Marker Identification in Acute Lymphoblastic Leukemia.
    Villarese P; Abdo C; Bertrand M; Thonier F; Giraud M; Salson M; Macintyre E
    Methods Mol Biol; 2022; 2453():43-59. PubMed ID: 35622319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical benefit of a high-throughput sequencing approach for minimal residual disease in acute lymphoblastic leukemia.
    Wright G; Watt E; Inglott S; Brooks T; Bartram J; Adams SP
    Pediatr Blood Cancer; 2019 Aug; 66(8):e27787. PubMed ID: 31034760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations for monitoring minimal residual disease using immunoglobulin clonality in patients with precursor B-cell lymphoblastic leukemia.
    Jo I; Chung NG; Lee S; Kwon A; Kim J; Choi H; Jang W; Kim S; Lee JW; Yoon JH; Cho B; Han K; Kim Y; Kim M
    Clin Chim Acta; 2019 Jan; 488():81-89. PubMed ID: 30389459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR.
    van der Velden VH; Willemse MJ; van der Schoot CE; Hählen K; van Wering ER; van Dongen JJ
    Leukemia; 2002 May; 16(5):928-36. PubMed ID: 11986956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical utility of next-generation sequencing-based minimal residual disease in paediatric B-cell acute lymphoblastic leukaemia.
    Sekiya Y; Xu Y; Muramatsu H; Okuno Y; Narita A; Suzuki K; Wang X; Kawashima N; Sakaguchi H; Yoshida N; Hama A; Takahashi Y; Kato K; Kojima S
    Br J Haematol; 2017 Jan; 176(2):248-257. PubMed ID: 27861730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease.
    Bartram J; Mountjoy E; Brooks T; Hancock J; Williamson H; Wright G; Moppett J; Goulden N; Hubank M
    J Mol Diagn; 2016 Jul; 18(4):494-506. PubMed ID: 27183494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of delayed bone marrow aspirations at the end of treatment induction for risk stratification and outcome in children with acute lymphoblastic leukaemia.
    Zuna J; Moericke A; Arens M; Koehler R; Panzer-Grümayer R; Bartram CR; Fischer S; Fronkova E; Zaliova M; Schrauder A; Stanulla M; Zimmermann M; Trka J; Stary J; Attarbaschi A; Mann G; Schrappe M; Cario G
    Br J Haematol; 2016 Jun; 173(5):742-8. PubMed ID: 26913693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Identification of immunoglobulin and T-cell receptor gene rearrangements--prerequisite for monitoring of minimal residual disease in Polish acute lymphoblastic leukemia patients based on European standards. Preliminary results].
    Dawidowska M; Derwich K; Szczepański T; Jółkowska J; Witt M; Wachowiak J
    Med Wieku Rozwoj; 2006; 10(1 Pt 2):323-34. PubMed ID: 17028396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation antigen receptor sequencing of paired diagnosis and relapse samples of B-cell acute lymphoblastic leukemia: Clonal evolution and implications for minimal residual disease target selection.
    Theunissen PMJ; de Bie M; van Zessen D; de Haas V; Stubbs AP; van der Velden VHJ
    Leuk Res; 2019 Jan; 76():98-104. PubMed ID: 30389174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of clonal stability of minimal residual disease targets between 1st and 2nd relapse of childhood precursor B-cell acute lymphoblastic leukemia.
    Guggemos A; Eckert C; Szczepanski T; Hanel C; Taube T; van der Velden VH; Graf-Einsiedel H; Henze G; Seeger K
    Haematologica; 2003 Jul; 88(7):737-46. PubMed ID: 12857551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of clonal immunoglobulin heavy chain and I cell receptor gamma gene rearrangements during progression of childhood acute lymphoblastic leukemia.
    Marshall GM; Kwan E; Haber M; Brisco MJ; Sykes PJ; Morley AA; Toogood I; Waters K; Tauro G; Ekert H
    Leukemia; 1995 Nov; 9(11):1847-50. PubMed ID: 7475273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vidjil: A Web Platform for Analysis of High-Throughput Repertoire Sequencing.
    Duez M; Giraud M; Herbert R; Rocher T; Salson M; Thonier F
    PLoS One; 2016; 11(11):e0166126. PubMed ID: 27835690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern of immunoglobulin and T-cell receptor (Ig/TCR) gene rearrangements in Polish pediatric acute lymphoblastic leukemia patients--implications for RQ-PCR-based assessment of minimal residual disease.
    Dawidowska M; Derwich K; Szczepański T; Jółkowska J; van der Velden VH; Wachowiak J; Witt M
    Leuk Res; 2006 Sep; 30(9):1119-25. PubMed ID: 16476479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Gene rearrangement pattern of immunoglobulin and T-cell receptor (Ig/TR) and its clinical characteristics in children with SET-NUP214 fusion gene-positive leukemia/lymphoma].
    Li WJ; Cui L; Gao C; Zhao XX; Liu SG; Xin YP; Zhang RD; Zhang DW; Wang B; Li ZG; Wu MY
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Dec; 19(6):1362-7. PubMed ID: 22169284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Real-time quantitative study of minimal residual disease in childhood B cell acute lymphoblastic leukemia].
    Jia YP; Liu GL; Zhang LP
    Zhonghua Er Ke Za Zhi; 2004 Aug; 42(8):600-4. PubMed ID: 15347448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.