These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 26898361)
41. Understanding and predicting forest mortality in the western United States using long-term forest inventory data and modeled hydraulic damage. Venturas MD; Todd HN; Trugman AT; Anderegg WRL New Phytol; 2021 Jun; 230(5):1896-1910. PubMed ID: 33112415 [TBL] [Abstract][Full Text] [Related]
43. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. Esteban EJL; Castilho CV; Melgaço KL; Costa FRC New Phytol; 2021 Feb; 229(4):1995-2006. PubMed ID: 33048346 [TBL] [Abstract][Full Text] [Related]
44. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest. Tremblay JA; Boulanger Y; Cyr D; Taylor AR; Price DT; St-Laurent MH PLoS One; 2018; 13(2):e0191645. PubMed ID: 29414989 [TBL] [Abstract][Full Text] [Related]
45. Drought then wildfire reveals a compound disturbance in a resprouting forest. Walden L; Fontaine JB; Ruthrof KX; Matusick G; Harper RJ Ecol Appl; 2023 Mar; 33(2):e2775. PubMed ID: 36344448 [TBL] [Abstract][Full Text] [Related]
46. Short-term forest resilience after drought-induced die-off in Southwestern European forests. Lloret F; Jaime LA; Margalef-Marrase J; Pérez-Navarro MA; Batllori E Sci Total Environ; 2022 Feb; 806(Pt 4):150940. PubMed ID: 34699836 [TBL] [Abstract][Full Text] [Related]
47. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Trugman AT; Anderegg LDL; Shaw JD; Anderegg WRL Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8532-8538. PubMed ID: 32229563 [TBL] [Abstract][Full Text] [Related]
48. Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Yang J; Tian H; Pan S; Chen G; Zhang B; Dangal S Glob Chang Biol; 2018 May; 24(5):1919-1934. PubMed ID: 29345031 [TBL] [Abstract][Full Text] [Related]
49. Forest biogeochemistry in response to drought. Schlesinger WH; Dietze MC; Jackson RB; Phillips RP; Rhoades CC; Rustad LE; Vose JM Glob Chang Biol; 2016 Jul; 22(7):2318-28. PubMed ID: 26403995 [TBL] [Abstract][Full Text] [Related]
50. What mediates tree mortality during drought in the southern Sierra Nevada? Paz-Kagan T; Brodrick PG; Vaughn NR; Das AJ; Stephenson NL; Nydick KR; Asner GP Ecol Appl; 2017 Dec; 27(8):2443-2457. PubMed ID: 28871610 [TBL] [Abstract][Full Text] [Related]
51. A conceptual framework: redefining forest soil's critical acid loads under a changing climate. McNulty SG; Boggs JL Environ Pollut; 2010 Jun; 158(6):2053-8. PubMed ID: 20045233 [TBL] [Abstract][Full Text] [Related]
52. Altered dynamics of forest recovery under a changing climate. Anderson-Teixeira KJ; Miller AD; Mohan JE; Hudiburg TW; Duval BD; Delucia EH Glob Chang Biol; 2013 Jul; 19(7):2001-21. PubMed ID: 23529980 [TBL] [Abstract][Full Text] [Related]
54. Effectiveness of forest density reduction treatments for increasing drought resistance of ponderosa pine growth. Young DJN; Estes BL; Gross S; Wuenschel A; Restaino C; Meyer MD Ecol Appl; 2023 Jun; 33(4):e2854. PubMed ID: 37032063 [TBL] [Abstract][Full Text] [Related]
55. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Ruiz-Benito P; Ratcliffe S; Zavala MA; Martínez-Vilalta J; Vilà-Cabrera A; Lloret F; Madrigal-González J; Wirth C; Greenwood S; Kändler G; Lehtonen A; Kattge J; Dahlgren J; Jump AS Glob Chang Biol; 2017 Oct; 23(10):4162-4176. PubMed ID: 28418105 [TBL] [Abstract][Full Text] [Related]
56. Tree drought-mortality risk depends more on intrinsic species resistance than on stand species diversity. Decarsin R; Guillemot J; le Maire G; Blondeel H; Meredieu C; Achard E; Bonal D; Cochard H; Corso D; Delzon S; Doucet Z; Druel A; Grossiord C; Torres-Ruiz JM; Bauhus J; Godbold DL; Hajek P; Jactel H; Jensen J; Mereu S; Ponette Q; Rewald B; Ruffault J; Sandén H; Scherer-Lorenzen M; Serrano-León H; Simioni G; Verheyen K; Werner R; Martin-StPaul N Glob Chang Biol; 2024 Sep; 30(9):e17503. PubMed ID: 39315483 [TBL] [Abstract][Full Text] [Related]
57. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model. Gutiérrez AG; Armesto JJ; Díaz MF; Huth A PLoS One; 2014; 9(7):e103226. PubMed ID: 25068869 [TBL] [Abstract][Full Text] [Related]
58. Low forest productivity associated with increasing drought-tolerant species is compensated by an increase in drought-tolerance richness. García-Valdés R; Vayreda J; Retana J; Martínez-Vilalta J Glob Chang Biol; 2021 May; 27(10):2113-2127. PubMed ID: 33511746 [TBL] [Abstract][Full Text] [Related]
59. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Zuleta D; Duque A; Cardenas D; Muller-Landau HC; Davies SJ Ecology; 2017 Oct; 98(10):2538-2546. PubMed ID: 28719081 [TBL] [Abstract][Full Text] [Related]
60. Catastrophic wind damage to North American forests and the potential impact of climate change. Peterson CJ Sci Total Environ; 2000 Nov; 262(3):287-311. PubMed ID: 11087033 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]