These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 26898517)
21. Extracellular oxidases of the lignin-degrading fungus Panus tigrinus. Cadimaliev DA; Revin VV; Atykyan NA; Samuilov VD Biochemistry (Mosc); 2005 Jun; 70(6):703-7. PubMed ID: 16038613 [TBL] [Abstract][Full Text] [Related]
22. Laccases for biorefinery applications: a critical review on challenges and perspectives. Roth S; Spiess AC Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966 [TBL] [Abstract][Full Text] [Related]
23. Methyl syringate: an efficient phenolic mediator for bacterial and fungal laccases. Rosado T; Bernardo P; Koci K; Coelho AV; Robalo MP; Martins LO Bioresour Technol; 2012 Nov; 124():371-8. PubMed ID: 22995168 [TBL] [Abstract][Full Text] [Related]
24. Enzymatic polymerisation and effect of fractionation of dissolved lignin from Eucalyptus globulus Kraft liquor. Gouveia S; Fernández-Costas C; Sanromán MA; Moldes D Bioresour Technol; 2012 Oct; 121():131-8. PubMed ID: 22858477 [TBL] [Abstract][Full Text] [Related]
25. Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants. Ammann EM; Gasser CA; Hommes G; Corvini PF Appl Microbiol Biotechnol; 2014 Feb; 98(3):1397-406. PubMed ID: 23812279 [TBL] [Abstract][Full Text] [Related]
26. Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase. Grönqvist S; Viikari L; Niku-Paavola ML; Orlandi M; Canevali C; Buchert J Appl Microbiol Biotechnol; 2005 Jun; 67(4):489-94. PubMed ID: 15602685 [TBL] [Abstract][Full Text] [Related]
27. Novel multienzyme oxidative biocatalyst for lignin bioprocessing. Crestini C; Melone F; Saladino R Bioorg Med Chem; 2011 Aug; 19(16):5071-8. PubMed ID: 21764591 [TBL] [Abstract][Full Text] [Related]
28. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples. Goacher RE; Braham EJ; Michienzi CL; Flick RM; Yakunin AF; Master ER Physiol Plant; 2018 Sep; 164(1):5-16. PubMed ID: 29286544 [TBL] [Abstract][Full Text] [Related]
29. Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Xiao YZ; Tu XM; Wang J; Zhang M; Cheng Q; Zeng WY; Shi YY Appl Microbiol Biotechnol; 2003 Feb; 60(6):700-7. PubMed ID: 12664149 [TBL] [Abstract][Full Text] [Related]
30. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase. Oliva-Taravilla A; Tomás-Pejó E; Demuez M; González-Fernández C; Ballesteros M J Biotechnol; 2016 Jan; 218():94-101. PubMed ID: 26684987 [TBL] [Abstract][Full Text] [Related]
32. A novel, simple screening method for investigating the properties of lignin oxidative activity. Tonin F; Vignali E; Pollegioni L; D'Arrigo P; Rosini E Enzyme Microb Technol; 2017 Jan; 96():143-150. PubMed ID: 27871375 [TBL] [Abstract][Full Text] [Related]
33. Roles of small laccases from Streptomyces in lignin degradation. Majumdar S; Lukk T; Solbiati JO; Bauer S; Nair SK; Cronan JE; Gerlt JA Biochemistry; 2014 Jun; 53(24):4047-58. PubMed ID: 24870309 [TBL] [Abstract][Full Text] [Related]
34. Ligninolytic fungal laccases and their biotechnological applications. Singh Arora D; Kumar Sharma R Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857 [TBL] [Abstract][Full Text] [Related]
35. Laccase production and enzymatic modification of lignin by a novel Peniophora sp. Shankar S; Shikha Appl Biochem Biotechnol; 2012 Feb; 166(4):1082-94. PubMed ID: 22203396 [TBL] [Abstract][Full Text] [Related]
36. A novel laccase from thermoalkaliphilic bacterium Caldalkalibacillus thermarum strain TA2.A1 able to catalyze dimerization of a lignin model compound. Ghatge S; Yang Y; Song WY; Kim TY; Hur HG Appl Microbiol Biotechnol; 2018 May; 102(9):4075-4086. PubMed ID: 29552695 [TBL] [Abstract][Full Text] [Related]
37. Reactions of blue and yellow fungal laccases with lignin model compounds. Leontievsky AA; Myasoedova NM; Baskunov BP; Pozdnyakova NN; Vares T; Kalkkinen N; Hatakka AI; Golovleva LA Biochemistry (Mosc); 1999 Oct; 64(10):1150-6. PubMed ID: 10561562 [TBL] [Abstract][Full Text] [Related]
38. Screening for novel laccase-producing microbes. Kiiskinen LL; Rättö M; Kruus K J Appl Microbiol; 2004; 97(3):640-6. PubMed ID: 15281946 [TBL] [Abstract][Full Text] [Related]
39. Effects of organic solvents on the activity of free and immobilised laccase from Rhus vernicifera. Wan YY; Lu R; Xiao L; Du YM; Miyakoshi T; Chen CL; Knill CJ; Kennedy JF Int J Biol Macromol; 2010 Nov; 47(4):488-95. PubMed ID: 20647020 [TBL] [Abstract][Full Text] [Related]
40. First description of a laccase-like enzyme in soil algae. Otto B; Schlosser D; Reisser W Arch Microbiol; 2010 Sep; 192(9):759-68. PubMed ID: 20623267 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]