BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 2689869)

  • 1. Arginine restriction induced by delta-N-(phosphonacetyl)-L-ornithine signals increased expression of HIS3, TRP5, CPA1, and CPA2 in Saccharomyces cerevisiae.
    Kinney DM; Lusty CJ
    Mol Cell Biol; 1989 Nov; 9(11):4882-8. PubMed ID: 2689869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A segment of mRNA encoding the leader peptide of the CPA1 gene confers repression by arginine on a heterologous yeast gene transcript.
    Delbecq P; Werner M; Feller A; Filipkowski RK; Messenguy F; Piérard A
    Mol Cell Biol; 1994 Apr; 14(4):2378-90. PubMed ID: 8139542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of RNA surveillance proteins Upf1/CpaR, Upf2 and Upf3 in the translational regulation of yeast CPA1 gene.
    Messenguy F; Vierendeels F; Piérard A; Delbecq P
    Curr Genet; 2002 Jul; 41(4):224-31. PubMed ID: 12172963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control-mechanisms acting at the transcriptional and post-transcriptional levels are involved in the synthesis of the arginine pathway carbamoylphosphate synthase of yeast.
    Messenguy F; Feller A; Crabeel M; Piérard A
    EMBO J; 1983; 2(8):1249-54. PubMed ID: 10872316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement for the carboxyl-terminal domain of Saccharomyces cerevisiae carbamoyl-phosphate synthetase.
    Lim AL; Powers-Lee SG
    J Biol Chem; 1996 May; 271(19):11400-9. PubMed ID: 8626695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression.
    Werner M; Feller A; Messenguy F; Piérard A
    Cell; 1987 Jun; 49(6):805-13. PubMed ID: 3555844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Hinnebusch AG
    Mol Cell Biol; 1985 Sep; 5(9):2349-60. PubMed ID: 3915540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the leader peptide of the yeast gene CPA1 and heterologous regulation by other fungal peptides.
    Delbecq P; Calvo O; Filipkowski RK; Piérard A; Messenguy F
    Curr Genet; 2000 Oct; 38(3):105-12. PubMed ID: 11057443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence of the small subunit of yeast carbamyl phosphate synthetase and identification of its catalytic domain.
    Nyunoya H; Lusty CJ
    J Biol Chem; 1984 Aug; 259(15):9790-8. PubMed ID: 6086650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine-specific repression in Saccharomyces cerevisiae: kinetic data on ARG1 and ARG3 mRNA transcription and stability support a transcriptional control mechanism.
    Crabeel M; Lavalle R; Glansdorff N
    Mol Cell Biol; 1990 Mar; 10(3):1226-33. PubMed ID: 2406564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of yeast LEU2. Total deletion of regulatory gene LEU3 unmasks GCN4-dependent basal level expression of LEU2.
    Brisco PR; Kohlhaw GB
    J Biol Chem; 1990 Jul; 265(20):11667-75. PubMed ID: 2195025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae.
    Moehle CM; Hinnebusch AG
    Mol Cell Biol; 1991 May; 11(5):2723-35. PubMed ID: 2017175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation.
    Jackson BM; Drysdale CM; Natarajan K; Hinnebusch AG
    Mol Cell Biol; 1996 Oct; 16(10):5557-71. PubMed ID: 8816468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbamoyl phosphate synthetase subunit Cpa1 interacting with Dut1, controls development, arginine biosynthesis, and pathogenicity of Colletotrichum gloeosporioides.
    Tan Q; Zhao X; He H; Zhang J; Yi T
    Fungal Biol; 2021 Mar; 125(3):184-190. PubMed ID: 33622534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast.
    Hope IA; Struhl K
    Cell; 1985 Nov; 43(1):177-88. PubMed ID: 3907851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical evidence for distinct mechanisms of translational control by upstream open reading frames.
    Gaba A; Wang Z; Krishnamoorthy T; Hinnebusch AG; Sachs MS
    EMBO J; 2001 Nov; 20(22):6453-63. PubMed ID: 11707416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The promoter region of the arg3 gene in Saccharomyces cerevisiae: nucleotide sequence and regulation in an arg3-lacZ gene fusion.
    Crabeel M; Huygen R; Cunin R; Glansdorff N
    EMBO J; 1983; 2(2):205-12. PubMed ID: 11894927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae.
    Yadav KK; Rajasekharan R
    Curr Genet; 2016 Nov; 62(4):841-851. PubMed ID: 26979516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Neurospora crassa arg-2 locus. Structure and expression of the gene encoding the small subunit of arginine-specific carbamoyl phosphate synthetase.
    Orbach MJ; Sachs MS; Yanofsky C
    J Biol Chem; 1990 Jul; 265(19):10981-7. PubMed ID: 2141606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N5-phosphonoacetyl-L-ornithine (PALO): a convenient synthesis and investigation of influence on regulation of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Johnson B; Steadman R; Patefield KD; Bunker JJ; Atkin AL; Dussault P
    Bioorg Med Chem Lett; 2011 Apr; 21(8):2351-3. PubMed ID: 21421312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.