BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 26898953)

  • 1. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast.
    Salinas F; de Boer CG; Abarca V; García V; Cuevas M; Araos S; Larrondo LF; Martínez C; Cubillos FA
    Sci Rep; 2016 Feb; 6():21849. PubMed ID: 26898953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of variation in transcription factor binding in yeast.
    Zheng W; Zhao H; Mancera E; Steinmetz LM; Snyder M
    Nature; 2010 Apr; 464(7292):1187-91. PubMed ID: 20237471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae: differential regulation by the CCAAT-box-binding factor.
    Dang VD; Valens M; Bolotin-Fukuhara M; Daignan-Fornier B
    Mol Microbiol; 1996 Nov; 22(4):681-92. PubMed ID: 8951815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae.
    Ishida C; Aranda C; Valenzuela L; Riego L; Deluna A; Recillas-Targa F; Filetici P; López-Revilla R; González A
    Mol Microbiol; 2006 Mar; 59(6):1790-806. PubMed ID: 16553884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic dissection of transcriptional regulation in budding yeast.
    Brem RB; Yvert G; Clinton R; Kruglyak L
    Science; 2002 Apr; 296(5568):752-5. PubMed ID: 11923494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hap2-3-5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae.
    Hernández H; Aranda C; López G; Riego L; González A
    Microbiology (Reading); 2011 Mar; 157(Pt 3):879-889. PubMed ID: 21051484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation.
    Molinet J; Cubillos FA; Salinas F; Liti G; Martínez C
    PLoS One; 2019; 14(7):e0220515. PubMed ID: 31348805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genetic basis of variation in clean lineages of Saccharomyces cerevisiae in response to stresses encountered during bioethanol fermentations.
    Greetham D; Wimalasena TT; Leung K; Marvin ME; Chandelia Y; Hart AJ; Phister TG; Tucker GA; Louis EJ; Smart KA
    PLoS One; 2014; 9(8):e103233. PubMed ID: 25116161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four linked genes participate in controlling sporulation efficiency in budding yeast.
    Ben-Ari G; Zenvirth D; Sherman A; David L; Klutstein M; Lavi U; Hillel J; Simchen G
    PLoS Genet; 2006 Nov; 2(11):e195. PubMed ID: 17112318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait.
    Stuecker TN; Scholes AN; Lewis JA
    PLoS Genet; 2018 Apr; 14(4):e1007335. PubMed ID: 29649251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: role of the key transcription factors acting in this process.
    Levi CE; Cardillo SB; Bertotti S; Ríos C; Correa García S; Moretti MB
    Biochem Biophys Res Commun; 2012 May; 421(3):572-7. PubMed ID: 22525679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic interactions between transcription factors cause natural variation in yeast.
    Gerke J; Lorenz K; Cohen B
    Science; 2009 Jan; 323(5913):498-501. PubMed ID: 19164747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural gene expression variation studies in yeast.
    Thompson DA; Cubillos FA
    Yeast; 2017 Jan; 34(1):3-17. PubMed ID: 27668700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses.
    Cubillos FA; Brice C; Molinet J; Tisné S; Abarca V; Tapia SM; Oporto C; García V; Liti G; Martínez C
    G3 (Bethesda); 2017 Jun; 7(6):1693-1705. PubMed ID: 28592651
    [No Abstract]   [Full Text] [Related]  

  • 15. Natural Variation in
    Sirr A; Scott AC; Cromie GA; Ludlow CL; Ahyong V; Morgan TS; Gilbert T; Dudley AM
    G3 (Bethesda); 2018 Jan; 8(1):239-251. PubMed ID: 29138237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gcn5p contributes to the bidirectional character of the UGA3-GLT1 yeast promoter.
    Aranda C; Colón M; Ishida C; Riego L; Deluna A; Valenzuela L; Herrera J; González A
    Biochem Biophys Res Commun; 2006 Sep; 348(3):989-96. PubMed ID: 16904075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphical analysis and experimental evaluation of Saccharomyces cerevisiae PTRK1|2 and PBMH1|2 promoter region.
    Gerber S; Hasenbrink G; Hendriksen W; Van Heusden P; Ludwig J; Klipp E; Lichtenberg-Fraté H
    Genome Inform; 2010 Jan; 22():11-20. PubMed ID: 20238415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress survival in a clinical Saccharomyces cerevisiae isolate is influenced by a major quantitative trait nucleotide.
    Diezmann S; Dietrich FS
    Genetics; 2011 Jul; 188(3):709-22. PubMed ID: 21515583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA variants affecting the expression of numerous genes in trans have diverse mechanisms of action and evolutionary histories.
    Lutz S; Brion C; Kliebhan M; Albert FW
    PLoS Genet; 2019 Nov; 15(11):e1008375. PubMed ID: 31738765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergence of the yeast transcription factor FZF1 affects sulfite resistance.
    Engle EK; Fay JC
    PLoS Genet; 2012; 8(6):e1002763. PubMed ID: 22719269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.