BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 26899174)

  • 1. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering.
    Sivashankari PR; Prabaharan M
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1382-1389. PubMed ID: 26899174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds.
    Curry AS; Pensa NW; Barlow AM; Bellis SL
    Matrix Biol; 2016; 52-54():397-412. PubMed ID: 26940231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan based biocomposite scaffolds for bone tissue engineering.
    Saravanan S; Leena RS; Selvamurugan N
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1354-1365. PubMed ID: 26845481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering.
    Cai DZ; Zeng C; Quan DP; Bu LS; Wang K; Lu HD; Li XF
    Chin Med J (Engl); 2007 Feb; 120(3):197-203. PubMed ID: 17355821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine.
    Rodríguez-Vázquez M; Vega-Ruiz B; Ramos-Zúñiga R; Saldaña-Koppel DA; Quiñones-Olvera LF
    Biomed Res Int; 2015; 2015():821279. PubMed ID: 26504833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering.
    Chung HJ; Park TG
    Adv Drug Deliv Rev; 2007 May; 59(4-5):249-62. PubMed ID: 17482310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering.
    Lee SH; Shin H
    Adv Drug Deliv Rev; 2007 May; 59(4-5):339-59. PubMed ID: 17499384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of nanocarriers within a porous chitosan scaffold for the sustained delivery of growth factors in bone tissue engineering applications.
    De Witte TM; Wagner AM; Fratila-Apachitei LE; Zadpoor AA; Peppas NA
    J Biomed Mater Res A; 2020 May; 108(5):1122-1135. PubMed ID: 31971334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan as a vehicle for growth factor delivery: Various preparations and their applications in bone tissue regeneration.
    Venkatesan J; Anil S; Kim SK; Shim MS
    Int J Biol Macromol; 2017 Nov; 104(Pt B):1383-1397. PubMed ID: 28109812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-fibrous tissue engineering scaffolds capable of growth factor delivery.
    Hu J; Ma PX
    Pharm Res; 2011 Jun; 28(6):1273-81. PubMed ID: 21234657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of chitin and chitosan nanofibers in bone regenerative engineering.
    Tao F; Cheng Y; Shi X; Zheng H; Du Y; Xiang W; Deng H
    Carbohydr Polym; 2020 Feb; 230():115658. PubMed ID: 31887899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.
    Lotfi M; Bagherzadeh R; Naderi-Meshkin H; Mahdipour E; Mafinezhad A; Sadeghnia HR; Esmaily H; Maleki M; Hasssanzadeh H; Ghayaour-Mobarhan M; Bidkhori HR; Bahrami AR
    Biopolymers; 2016 Mar; 105(3):163-75. PubMed ID: 26566174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naturally derived materials-based cell and drug delivery systems in skin regeneration.
    Huang S; Fu X
    J Control Release; 2010 Mar; 142(2):149-59. PubMed ID: 19850093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of endogenous regenerative technology for in situ regenerative medicine.
    Anitua E; Sánchez M; Orive G
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):741-52. PubMed ID: 20102730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled release scaffolds for bone tissue engineering.
    Cartmell S
    J Pharm Sci; 2009 Feb; 98(2):430-41. PubMed ID: 18481312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.
    Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG
    Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration.
    Przekora A; Ginalska G
    Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically active chitosan systems for tissue engineering and regenerative medicine.
    Jiang T; Kumbar SG; Nair LS; Laurencin CT
    Curr Top Med Chem; 2008; 8(4):354-64. PubMed ID: 18393897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.