BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 26899174)

  • 21. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications.
    Agarwal T; Narayan R; Maji S; Behera S; Kulanthaivel S; Maiti TK; Banerjee I; Pal K; Giri S
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1499-1506. PubMed ID: 27086289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chitosan scaffolds: Expanding horizons in biomedical applications.
    Gholap AD; Rojekar S; Kapare HS; Vishwakarma N; Raikwar S; Garkal A; Mehta TA; Jadhav H; Prajapati MK; Annapure U
    Carbohydr Polym; 2024 Jan; 323():121394. PubMed ID: 37940287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaffolds for Controlled Release of Cartilage Growth Factors.
    Morille M; Venier-Julienne MC; Montero-Menei CN
    Methods Mol Biol; 2015; 1340():171-80. PubMed ID: 26445838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration.
    Bayer EA; Gottardi R; Fedorchak MV; Little SR
    J Control Release; 2015 Dec; 219():129-140. PubMed ID: 26264834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in skin regeneration: application of electrospun scaffolds.
    Norouzi M; Boroujeni SM; Omidvarkordshouli N; Soleimani M
    Adv Healthc Mater; 2015 Jun; 4(8):1114-33. PubMed ID: 25721694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fish collagen-based scaffold containing PLGA microspheres for controlled growth factor delivery in skin tissue engineering.
    Cao H; Chen MM; Liu Y; Liu YY; Huang YQ; Wang JH; Chen JD; Zhang QQ
    Colloids Surf B Biointerfaces; 2015 Dec; 136():1098-106. PubMed ID: 26618451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies for controlled delivery of growth factors and cells for bone regeneration.
    Vo TN; Kasper FK; Mikos AG
    Adv Drug Deliv Rev; 2012 Sep; 64(12):1292-309. PubMed ID: 22342771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Therapeutic potential of chitosan and its derivatives in regenerative medicine.
    Shi C; Zhu Y; Ran X; Wang M; Su Y; Cheng T
    J Surg Res; 2006 Jun; 133(2):185-92. PubMed ID: 16458923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application.
    Przekora A; Palka K; Ginalska G
    J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects.
    Huri PY; Huri G; Yasar U; Ucar Y; Dikmen N; Hasirci N; Hasirci V
    Biomed Mater; 2013 Aug; 8(4):045009. PubMed ID: 23782488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2.
    Zhou P; Xia Y; Cheng X; Wang P; Xie Y; Xu S
    Biomaterials; 2014 Dec; 35(38):10033-45. PubMed ID: 25260421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro release of dexamethasone or bFGF from chitosan/hydroxyapatite scaffolds.
    Tiğli RS; Akman AC; Gümüşderelioğlu M; Nohutçu RM
    J Biomater Sci Polym Ed; 2009; 20(13):1899-914. PubMed ID: 19793446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering.
    Deepthi S; Venkatesan J; Kim SK; Bumgardner JD; Jayakumar R
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1338-1353. PubMed ID: 27012892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration.
    Busilacchi A; Gigante A; Mattioli-Belmonte M; Manzotti S; Muzzarelli RA
    Carbohydr Polym; 2013 Oct; 98(1):665-76. PubMed ID: 23987397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental tissue regeneration by DDS technology of bio-signaling molecules.
    Kimura Y; Tabata Y
    J Dermatol Sci; 2007 Sep; 47(3):189-99. PubMed ID: 17507205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering.
    Sohier J; Moroni L; van Blitterswijk C; de Groot K; Bezemer JM
    Expert Opin Drug Deliv; 2008 May; 5(5):543-66. PubMed ID: 18491981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue engineering and regeneration using biodegradable scaffolds.
    Zhang X; Zhang Y
    Panminerva Med; 2015 Dec; 57(4):147-52. PubMed ID: 25634586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine.
    Dumont VC; Mansur HS; Mansur AA; Carvalho SM; Capanema NS; Barrioni BR
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1465-1478. PubMed ID: 27086294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.