These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26899260)

  • 1. Cognitive flexibility, heart rate variability, and resilience predict fine-grained regulation of arousal during prolonged threat.
    Hildebrandt LK; McCall C; Engen HG; Singer T
    Psychophysiology; 2016 Jun; 53(6):880-90. PubMed ID: 26899260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in autonomic functions as related to induced stress between children with and without cerebral palsy while performing a virtual meal-making task.
    Kirshner S; Weiss PL; Tirosh E
    Res Dev Disabil; 2016; 49-50():247-57. PubMed ID: 26735708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of immersiveness in virtual reality exposure using physiological data.
    Jang DP; Kim IY; Nam SW; Wiederhold BK; Wiederhold MD; Kim SI
    Stud Health Technol Inform; 2002; 85():207-13. PubMed ID: 15458088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiophenomenology in retrospect: Memory reliably reflects physiological arousal during a prior threatening experience.
    McCall C; Hildebrandt LK; Bornemann B; Singer T
    Conscious Cogn; 2015 Dec; 38():60-70. PubMed ID: 26529679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The amygdala mediates the emotional modulation of threat-elicited skin conductance response.
    Wood KH; Ver Hoef LW; Knight DC
    Emotion; 2014 Aug; 14(4):693-700. PubMed ID: 24866521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart rate variability analysis for the assessment of immersive emotional arousal using virtual reality: Comparing real and virtual scenarios.
    Marín-Morales J; Higuera-Trujillo JL; Guixeres J; Llinares C; Alcañiz M; Valenza G
    PLoS One; 2021; 16(7):e0254098. PubMed ID: 34197553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Better than the real thing: eliciting fear with moving and static computer-generated stimuli.
    Courtney CG; Dawson ME; Schell AM; Iyer A; Parsons TD
    Int J Psychophysiol; 2010 Nov; 78(2):107-14. PubMed ID: 20600370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fear and physiological arousal during a virtual height challenge--effects in patients with acrophobia and healthy controls.
    Diemer J; Lohkamp N; Mühlberger A; Zwanzger P
    J Anxiety Disord; 2016 Jan; 37():30-9. PubMed ID: 26600469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implicit emotion regulation in the presence of threat: neural and autonomic correlates.
    Tupak SV; Dresler T; Guhn A; Ehlis AC; Fallgatter AJ; Pauli P; Herrmann MJ
    Neuroimage; 2014 Jan; 85 Pt 1():372-9. PubMed ID: 24096027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galvanic Skin Response as a Simple Physiology Lab Teaching Tool- An Alternative Indicator of Sympathetic Arousal.
    Nepal O; Jha RK; Bhattarai A; Khadka P; Kapoor BK
    Kathmandu Univ Med J (KUMJ); 2018; 16(62):156-160. PubMed ID: 30636757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The link between resting heart rate variability and affective flexibility.
    Grol M; De Raedt R
    Cogn Affect Behav Neurosci; 2020 Aug; 20(4):746-756. PubMed ID: 32462431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of physiological response to two virtual environments: driving and flying simulation.
    Jang DP; Kim IY; Nam SW; Wiederhold BK; Wiederhold MD; Kim SI
    Cyberpsychol Behav; 2002 Feb; 5(1):11-8. PubMed ID: 11990971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting physiological arousal is associated with the experience of music-induced chills.
    Mori K; Iwanaga M
    Int J Psychophysiol; 2014 Aug; 93(2):220-6. PubMed ID: 24814935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of virtual environment platforms on emotional responses.
    Kim K; Rosenthal MZ; Zielinski DJ; Brady R
    Comput Methods Programs Biomed; 2014 Mar; 113(3):882-93. PubMed ID: 24440136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affective and physiological responses to environmental noises and music.
    Gomez P; Danuser B
    Int J Psychophysiol; 2004 Jul; 53(2):91-103. PubMed ID: 15210287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of fear of emotion in distress, arousal, and cognitive interference following an emotional stimulus.
    Salters-Pedneault K; Gentes E; Roemer L
    Cogn Behav Ther; 2007; 36(1):12-22. PubMed ID: 17364648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sympathetic arousal, but not disturbed executive functioning, mediates the impairment of cognitive flexibility under stress.
    Marko M; Riečanský I
    Cognition; 2018 May; 174():94-102. PubMed ID: 29448083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac defense reactivity and cognitive flexibility in high- and low-resilience women.
    Otero J; Muñoz MA; Fernández-Santaella MC; Verdejo-García A; Sánchez-Barrera MB
    Psychophysiology; 2020 Nov; 57(11):e13656. PubMed ID: 32748997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utility of prolonged respiratory exhalation for reducing physiological and psychological arousal in non-threatening and threatening situations.
    Cappo BM; Holmes DS
    J Psychosom Res; 1984; 28(4):265-73. PubMed ID: 6481661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological Responses to a Haunted-House Threat Experience: Distinct Tonic and Phasic Effects.
    Tashjian SM; Fedrigo V; Molapour T; Mobbs D; Camerer CF
    Psychol Sci; 2022 Feb; 33(2):236-248. PubMed ID: 35001710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.