These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 26899364)
1. Chemical Vapor Deposition of Monolayer Mo(1-x)W(x)S2 Crystals with Tunable Band Gaps. Wang Z; Liu P; Ito Y; Ning S; Tan Y; Fujita T; Hirata A; Chen M Sci Rep; 2016 Feb; 6():21536. PubMed ID: 26899364 [TBL] [Abstract][Full Text] [Related]
2. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. Chen Y; Xi J; Dumcenco DO; Liu Z; Suenaga K; Wang D; Shuai Z; Huang YS; Xie L ACS Nano; 2013 May; 7(5):4610-6. PubMed ID: 23600688 [TBL] [Abstract][Full Text] [Related]
3. CVD synthesis of Mo((1-x))W(x)S2 and MoS(2(1-x))Se(2x) alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Zhang W; Li X; Jiang T; Song J; Lin Y; Zhu L; Xu X Nanoscale; 2015 Aug; 7(32):13554-60. PubMed ID: 26204564 [TBL] [Abstract][Full Text] [Related]
4. Growth of MoS(2(1-x))Se(2x) (x = 0.41-1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition. Feng Q; Mao N; Wu J; Xu H; Wang C; Zhang J; Xie L ACS Nano; 2015 Jul; 9(7):7450-5. PubMed ID: 26061011 [TBL] [Abstract][Full Text] [Related]
5. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
6. Controllable growth of wafer-scale monolayer transition metal dichalcogenides ternary alloys with tunable band gap. Li R; Yu J; Yao B; Huang X; Fu Z; Zhou Z; Yuan G; Xu J; Gao L Nanotechnology; 2022 Dec; 34(7):. PubMed ID: 36384029 [TBL] [Abstract][Full Text] [Related]
7. Strain Release Induced Novel Fluorescence Variation in CVD-Grown Monolayer WS Feng S; Yang R; Jia Z; Xiang J; Wen F; Mu C; Nie A; Zhao Z; Xu B; Tao C; Tian Y; Liu Z ACS Appl Mater Interfaces; 2017 Oct; 9(39):34071-34077. PubMed ID: 28902488 [TBL] [Abstract][Full Text] [Related]
8. Chemical vapor deposition growth of crystalline monolayer MoSe2. Wang X; Gong Y; Shi G; Chow WL; Keyshar K; Ye G; Vajtai R; Lou J; Liu Z; Ringe E; Tay BK; Ajayan PM ACS Nano; 2014 May; 8(5):5125-31. PubMed ID: 24680389 [TBL] [Abstract][Full Text] [Related]
9. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. Kim IS; Sangwan VK; Jariwala D; Wood JD; Park S; Chen KS; Shi F; Ruiz-Zepeda F; Ponce A; Jose-Yacaman M; Dravid VP; Marks TJ; Hersam MC; Lauhon LJ ACS Nano; 2014 Oct; 8(10):10551-8. PubMed ID: 25223821 [TBL] [Abstract][Full Text] [Related]
11. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Lv R; Robinson JA; Schaak RE; Sun D; Sun Y; Mallouk TE; Terrones M Acc Chem Res; 2015 Jan; 48(1):56-64. PubMed ID: 25490673 [TBL] [Abstract][Full Text] [Related]
12. Vapor-phase growth and characterization of Mo(1-x)W(x)S2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. Liu H; Antwi KK; Chua S; Chi D Nanoscale; 2014 Jan; 6(1):624-9. PubMed ID: 24253383 [TBL] [Abstract][Full Text] [Related]
13. Phase-Controlled Synthesis of Monolayer W Wang Z; Zhao X; Yang Y; Qiao L; Lv L; Chen Z; Di Z; Ren W; Pennycook SJ; Zhou J; Gao Y Small; 2020 May; 16(20):e2000852. PubMed ID: 32323489 [TBL] [Abstract][Full Text] [Related]
14. Temperature-Dependent Two-Dimensional Transition Metal Dichalcogenide Heterostructures: Controlled Synthesis and Their Properties. Chen F; Wang L; Ji X; Zhang Q ACS Appl Mater Interfaces; 2017 Sep; 9(36):30821-30831. PubMed ID: 28814077 [TBL] [Abstract][Full Text] [Related]
15. Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. Liu B; Fathi M; Chen L; Abbas A; Ma Y; Zhou C ACS Nano; 2015 Jun; 9(6):6119-27. PubMed ID: 26000899 [TBL] [Abstract][Full Text] [Related]
16. Defect Passivation and Photoluminescence Enhancement of Monolayer MoS Wang W; Shu H; Wang J; Cheng Y; Liang P; Chen X ACS Appl Mater Interfaces; 2020 Feb; 12(8):9563-9571. PubMed ID: 32009383 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Wafer-Scale Monolayer WS Chen J; Shao K; Yang W; Tang W; Zhou J; He Q; Wu Y; Zhang C; Li X; Yang X; Wu Z; Kang J ACS Appl Mater Interfaces; 2019 May; 11(21):19381-19387. PubMed ID: 31055914 [TBL] [Abstract][Full Text] [Related]
18. Band Alignment Engineering by Twist Angle and Composition Modulation for Heterobilayer. Kang T; Jin Z; Han X; Liu Y; You J; Wong H; Liu H; Pan J; Liu Z; Tang TW; Zhang K; Wang J; Yu J; Li D; Pan A; Pan D; Wang J; Liu Y; Luo Z Small; 2022 Jul; 18(29):e2202229. PubMed ID: 35736629 [TBL] [Abstract][Full Text] [Related]
19. Enhanced exciton emission behavior and tunable band gap of ternary W(S Sun H; Wang J; Wang F; Xu L; Jiang K; Shang L; Hu Z; Chu J Nanoscale; 2018 Jun; 10(24):11553-11563. PubMed ID: 29892765 [TBL] [Abstract][Full Text] [Related]
20. Composition-Tunable Synthesis of Large-Scale Mo Park J; Kim MS; Park B; Oh SH; Roy S; Kim J; Choi W ACS Nano; 2018 Jun; 12(6):6301-6309. PubMed ID: 29799725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]