These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26899524)

  • 1. A mechanism of Cu work function reduction in CsBr/Cu photocathodes.
    Halliday MT; Hess WP; Shluger AL
    Phys Chem Chem Phys; 2016 Mar; 18(10):7427-34. PubMed ID: 26899524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic emittance reduction of an electron beam from metal photocathodes.
    Hauri CP; Ganter R; Le Pimpec F; Trisorio A; Ruchert C; Braun HH
    Phys Rev Lett; 2010 Jun; 104(23):234802. PubMed ID: 20867245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of oxygen-induced phase segregation on the interfacial electronic structure and quantum efficiency of Cs
    Galdi A; DeBenedetti WJI; Balajka J; Cultrera L; Bazarov IV; Maxson JM; Hines MA
    J Chem Phys; 2020 Oct; 153(14):144705. PubMed ID: 33086829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoemission from Bialkali Photocathodes through an Atomically Thin Protection Layer.
    Liu F; Guo L; DeFazio J; Pavlenko V; Yamamoto M; Moody NA; Yamaguchi H
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1710-1717. PubMed ID: 34935342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient Self-Doped CuBi
    Wang F; Septina W; Chemseddine A; Abdi FF; Friedrich D; Bogdanoff P; van de Krol R; Tilley SD; Berglund SP
    J Am Chem Soc; 2017 Oct; 139(42):15094-15103. PubMed ID: 28968492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly (001)-textured p-type WSe
    Bozheyev F; Harbauer K; Zahn C; Friedrich D; Ellmer K
    Sci Rep; 2017 Nov; 7(1):16003. PubMed ID: 29167549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociative adsorption of CO2 on flat, stepped, and kinked Cu surfaces.
    Muttaqien F; Hamamoto Y; Inagaki K; Morikawa Y
    J Chem Phys; 2014 Jul; 141(3):034702. PubMed ID: 25053329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Surface Cleaning on Quantum Efficiency, Lifetime and Surface Morphology of p-GaN:Cs Photocathodes.
    Schaber J; Xiang R; Teichert J; Arnold A; Murcek P; Zwartek P; Ryzhov A; Ma S; Gatzmaga S; Michel P; Gaponik N
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cesium-Coated Halide Perovskites as a Photocathode Material: Modeling Insights.
    Lewis SG; Ghosh D; Jensen KL; Finkenstadt D; Shabaev A; Lambrakos SG; Liu F; Nie W; Blancon JC; Zhou L; Crochet JJ; Moody N; Mohite AD; Tretiak S; Neukirch AJ
    J Phys Chem Lett; 2021 Jul; 12(27):6269-6276. PubMed ID: 34197122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparative study of uniform-doping and gradient-doping negative electron affinity GaN photocathodes].
    Li B; Chang BK; Xu Y; Du XQ; Du YJ; Fu XQ; Wang XH; Zhang JJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Aug; 31(8):2036-9. PubMed ID: 22007379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral response characteristics of the transmission-mode aluminum gallium nitride photocathode with varying aluminum composition.
    Hao G; Liu J; Ke S
    Appl Opt; 2017 Dec; 56(35):9757-9761. PubMed ID: 29240122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Dot Thin-Films as Rugged, High-Performance Photocathodes.
    Makarov NS; Lim J; Lin Q; Lewellen JW; Moody NA; Robel I; Pietryga JM
    Nano Lett; 2017 Apr; 17(4):2319-2327. PubMed ID: 28253617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of ion beam surface treatment on the emission performance of photocathodes.
    Liu Y; Li F; Tian H; Wang G; Wang X
    Nanoscale Adv; 2022 Aug; 4(17):3517-3523. PubMed ID: 36134348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale Computational Design of Functionalized Photocathodes for H
    Kearney K; Iyer A; Rockett A; Staykov A; Ertekin E
    J Am Chem Soc; 2018 Jan; 140(1):50-53. PubMed ID: 29271201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitaxial Bi2 FeCrO6 Multiferroic Thin Film as a New Visible Light Absorbing Photocathode Material.
    Li S; AlOtaibi B; Huang W; Mi Z; Serpone N; Nechache R; Rosei F
    Small; 2015 Aug; 11(32):4018-26. PubMed ID: 25988512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesh-based semitransparent photocathodes.
    Carruthers GR
    Appl Opt; 1975 Jul; 14(7):1667-72. PubMed ID: 20154888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of quantum efficiency in spin-polarized photocathodes by atomic hydrogen cleaning.
    Jin X; Suzuki M; Yasue T; Koshikawa T; Takeda Y
    Ultramicroscopy; 2017 Dec; 183():89-93. PubMed ID: 28410772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells.
    Lee CS; Larina L; Shin YM; Al-Ammar EA; Ahn BT
    Phys Chem Chem Phys; 2012 Apr; 14(14):4789-95. PubMed ID: 22382807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of Al(x)Ga(1-x)As/GaAs photocathodes with different aluminum concentrations by surface photovoltage spectroscopy.
    Jiao G; Hu C; Liu J; Qian Y
    Appl Opt; 2015 Oct; 54(28):8473-8. PubMed ID: 26479625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative research on GaAs photocathodes before and after activation.
    Chen L; Qian Y; Chang B
    Appl Opt; 2011 Aug; 50(22):4457-62. PubMed ID: 21833121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.