These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26899777)

  • 21. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging.
    Leiderman R; Barbone PE; Oberai AA; Bamber JC
    Phys Med Biol; 2006 Dec; 51(24):6291-313. PubMed ID: 17148819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.
    Berry GP; Bamber JC; Armstrong CG; Miller NR; Barbone PE
    Ultrasound Med Biol; 2006 Apr; 32(4):547-67. PubMed ID: 16616601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials.
    Giorgio I; Andreaus U; Scerrato D; dell'Isola F
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1325-43. PubMed ID: 26831284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age.
    Isaksson H; Malkiewicz M; Nowak R; Helminen HJ; Jurvelin JS
    Bone; 2010 Dec; 47(6):1030-8. PubMed ID: 20813215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.
    Liu K; Ovaert TC
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):440-50. PubMed ID: 21316632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and parameter identification of a visco-hyperelastic model for the periodontal ligament.
    Huang H; Tang W; Tan Q; Yan B
    J Mech Behav Biomed Mater; 2017 Apr; 68():210-215. PubMed ID: 28187321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FEM simulation of the die compaction of pharmaceutical products: influence of visco-elastic phenomena and comparison with experiments.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2013 Sep; 453(2):389-94. PubMed ID: 23747487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure.
    Darling AL; Yalavarthy PK; Doyley MM; Dehghani H; Pogue BW
    Phys Med Biol; 2007 Jul; 52(14):4121-36. PubMed ID: 17664598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dynamic material parameter estimation procedure for soft tissue using a poroelastic finite element model.
    Laible JP; Pflaster D; Simon BR; Krag MH; Pope M; Haugh LD
    J Biomech Eng; 1994 Feb; 116(1):19-29. PubMed ID: 8189710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular mechanochemical waves in an active poroelastic model.
    Radszuweit M; Alonso S; Engel H; Bär M
    Phys Rev Lett; 2013 Mar; 110(13):138102. PubMed ID: 23581377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2015 Apr; 44():1-9. PubMed ID: 25591049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexural and creep properties of human jaw compact bone for FEA studies.
    Vitins V; Dobelis M; Middleton J; Limbert G; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):299-303. PubMed ID: 14675950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of the microcrack shape, size and direction on the poroelastic behaviors of a single osteon: a finite element study.
    Cen HP; Wu XG; Yu WL; Liu QZ; Jia YM
    Acta Bioeng Biomech; 2016; 18(1):3-10. PubMed ID: 27149885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between the interstitial fluid and the extracellular matrix in confined indentation.
    Lu Y; Wang W
    J Biomech Eng; 2008 Aug; 130(4):041011. PubMed ID: 18601453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.