These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26899797)

  • 21. The up and down bobbing of human walking: a compromise between muscle work and efficiency.
    Massaad F; Lejeune TM; Detrembleur C
    J Physiol; 2007 Jul; 582(Pt 2):789-99. PubMed ID: 17463048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical work and efficiency in level walking and running.
    Cavagna GA; Kaneko M
    J Physiol; 1977 Jun; 268(2):467--81. PubMed ID: 874922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.
    Takahashi KZ; Stanhope SJ
    Gait Posture; 2013 Sep; 38(4):818-23. PubMed ID: 23628408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical external work and recovery at preferred walking speed in obese subjects.
    Malatesta D; Vismara L; Menegoni F; Galli M; Romei M; Capodaglio P
    Med Sci Sports Exerc; 2009 Feb; 41(2):426-34. PubMed ID: 19127181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of different self-selected walking speeds in leveling of body center of mass, mechanical work and energy in healthy children.
    Carriquiry M; Silva-Pereyra V; Jerez-Mayorga D; Fábrica G
    Acta Bioeng Biomech; 2021; 23(3):125-131. PubMed ID: 34978307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical energy patterns in nordic walking: comparisons with conventional walking.
    Pellegrini B; Peyré-Tartaruga LA; Zoppirolli C; Bortolan L; Savoldelli A; Minetti AE; Schena F
    Gait Posture; 2017 Jan; 51():234-238. PubMed ID: 27825073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy Cost of Slow and Normal Gait Speeds in Low and Normally Functioning Adults.
    Rowley TW; Cho C; Swartz AM; Staudenmayer J; Hyngstrom A; Keenan KG; Welch WA; Strath SJ
    Am J Phys Med Rehabil; 2019 Nov; 98(11):976-981. PubMed ID: 31135461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms contributing to gait speed and metabolic cost in children with unilateral cerebral palsy.
    Pinto TPS; Fonseca ST; Gonçalves RV; Souza TR; Vaz DV; Silva PLP; Mancini MC
    Braz J Phys Ther; 2018; 22(1):42-48. PubMed ID: 28728959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The transmission efficiency of backward walking at different gradients.
    Minetti AE; Ardigò LP
    Pflugers Arch; 2001 Jul; 442(4):542-6. PubMed ID: 11510887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rocker-profile design shoes improve pendular energy recovery in walking with no effects on total mechanical work.
    Ruggiero L; Carpi M; Minetti AE
    J Biomech; 2022 Nov; 144():111345. PubMed ID: 36283145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pendular energy transduction within the step during human walking on slopes at different speeds.
    Dewolf AH; Ivanenko YP; Lacquaniti F; Willems PA
    PLoS One; 2017; 12(10):e0186963. PubMed ID: 29073208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of human walking at steady speeds.
    Kokshenev VB
    Phys Rev Lett; 2004 Nov; 93(20):208101. PubMed ID: 15600973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy.
    Zollinger M; Degache F; Currat G; Pochon L; Peyrot N; Newman CJ; Malatesta D
    Front Physiol; 2016; 7():121. PubMed ID: 27148062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed.
    Sasaki K; Neptune RR
    Gait Posture; 2006 Apr; 23(3):383-90. PubMed ID: 16029949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Individual limb work does not explain the greater metabolic cost of walking in elderly adults.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2007 Jun; 102(6):2266-73. PubMed ID: 17363623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elastic energy in locomotion: Spring-mass vs. poly-articulated models.
    Moretto P; Villeger D; Costes A; Watier B
    Gait Posture; 2016 Jul; 48():183-188. PubMed ID: 27285478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.