These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26899843)

  • 1. Comparative Analysis of Proliferation and Viability of Multipotent Mesenchymal Stromal Cells in 3D Scaffolds with Different Architectonics.
    Kuznetsova DS; Timashev PS; Dudenkova VV; Meleshina AV; Antonov EA; Krotova LI; Popov VK; Bagratashvili VN; Zagaynova EV
    Bull Exp Biol Med; 2016 Feb; 160(4):535-41. PubMed ID: 26899843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.
    Chuenjitkuntaworn B; Osathanon T; Nowwarote N; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2016 Jan; 104(1):264-71. PubMed ID: 26362586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Printed Scaffolds with Multipotent Mesenchymal Stromal Cells for Rabbit Mandibular Reconstruction and Engineering.
    Fang D; Roskies M; Abdallah MN; Bakkar M; Jordan J; Lin LC; Tamimi F; Tran SD
    Methods Mol Biol; 2017; 1553():273-291. PubMed ID: 28229424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds.
    Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR
    J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells.
    Rungsiyanont S; Dhanesuan N; Swasdison S; Kasugai S
    J Biomater Appl; 2012 Jul; 27(1):47-54. PubMed ID: 21343214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferative and Differentiation Potential of Multipotent Mesenchymal Stem Cells Cultured on Biocompatible Polymer Scaffolds with Various Physicochemical Characteristics.
    Rodina AV; Tenchurin TK; Saprykin VP; Shepelev AD; Mamagulashvili VG; Grigor'ev TE; Moskaleva EY; Chvalun SN; Severin SE
    Bull Exp Biol Med; 2017 Feb; 162(4):488-495. PubMed ID: 28243915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained release of 17β-estradiol stimulates osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on chitosan-hydroxyapatite scaffolds.
    Irmak G; Demirtaş TT; Çetin Altındal D; Çalış M; Gümüşderelioğlu M
    Cells Tissues Organs; 2014; 199(1):37-50. PubMed ID: 25115579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds.
    Mauney JR; Nguyen T; Gillen K; Kirker-Head C; Gimble JM; Kaplan DL
    Biomaterials; 2007 Dec; 28(35):5280-90. PubMed ID: 17765303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold.
    Krishnamurithy G; Murali MR; Hamdi M; Abbas AA; Raghavendran HB; Kamarul T
    Regen Med; 2015; 10(5):579-90. PubMed ID: 26237702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds.
    Bellini MZ; Caliari-Oliveira C; Mizukami A; Swiech K; Covas DT; Donadi EA; Oliva-Neto P; Moraes ÂM
    J Biomater Appl; 2015 Mar; 29(8):1155-66. PubMed ID: 25281644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenic differentiation of mesenchymal stem cells in fibrin-hydroxyapatite matrix in a 3-dimensional mesh scaffold.
    Jung O; Hanken H; Smeets R; Hartjen P; Friedrich RE; Schwab B; Gröbe A; Heiland M; Al-Dam A; Eichhorn W; Sehner S; Kolk A; Wöltje M; Stein JM
    In Vivo; 2014; 28(4):477-82. PubMed ID: 24982212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds.
    Fonseca-García A; Mota-Morales JD; Quintero-Ortega IA; García-Carvajal ZY; Martínez-López V; Ruvalcaba E; Landa-Solís C; Solis L; Ibarra C; Gutiérrez MC; Terrones M; Sanchez IC; del Monte F; Velasquillo MC; Luna-Bárcenas G
    J Biomed Mater Res A; 2014 Oct; 102(10):3341-51. PubMed ID: 23894015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simvastatin coating of TiO₂ scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells.
    Pullisaar H; Reseland JE; Haugen HJ; Brinchmann JE; Ostrup E
    Biochem Biophys Res Commun; 2014 Apr; 447(1):139-44. PubMed ID: 24704451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds.
    Leferink AM; Santos D; Karperien M; Truckenmüller RK; van Blitterswijk CA; Moroni L
    Integr Biol (Camb); 2015 Dec; 7(12):1574-86. PubMed ID: 26566169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.
    Sinlapabodin S; Amornsudthiwat P; Damrongsakkul S; Kanokpanont S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():960-70. PubMed ID: 26478392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Wang M; Cheng X; Zhu W; Holmes B; Keidar M; Zhang LG
    Tissue Eng Part A; 2014 Mar; 20(5-6):1060-71. PubMed ID: 24219622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells.
    Karadzic I; Vucic V; Jokanovic V; Debeljak-Martacic J; Markovic D; Petrovic S; Glibetic M
    J Biomed Mater Res A; 2015 Jan; 103(1):350-7. PubMed ID: 24665062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.