BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 26900017)

  • 1. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging.
    Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW
    Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in analytical modeling of lumbar disc degeneration.
    Natarajan RN; Williams JR; Andersson GB
    Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies.
    Detiger SE; de Bakker JY; Emanuel KS; Schmitz M; Vergroesen PP; van der Veen AJ; Mazel C; Smit TH
    J Biomater Appl; 2016 Feb; 30(7):983-94. PubMed ID: 26494611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion.
    Wade KR; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intervertebral disc response to cyclic loading--an animal model.
    Ekström L; Kaigle A; Hult E; Holm S; Rostedt M; Hansson T
    Proc Inst Mech Eng H; 1996; 210(4):249-58. PubMed ID: 9046185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc.
    Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading.
    Williams JR; Natarajan RN; Andersson GB
    J Biomech; 2007; 40(9):1981-7. PubMed ID: 17156786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experiments study on mechanical behavior of porcine lumbar intervertebral disc after nucleotomy under compression].
    Zhu S; Yang X; Luan Y; Liu Q; Zhang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):590-595. PubMed ID: 31441259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration.
    Kaigle A; Ekström L; Holm S; Rostedt M; Hansson T
    J Spinal Disord; 1998 Feb; 11(1):65-70. PubMed ID: 9493772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study.
    Cheung JT; Zhang M; Chow DH
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):790-9. PubMed ID: 14527805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent.
    Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM
    J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.