These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26900066)

  • 1. Pain Modulation and the Transition from Acute to Chronic Pain.
    Heinricher MM
    Adv Exp Med Biol; 2016; 904():105-15. PubMed ID: 26900066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat.
    Pertovaara A; Kontinen VK; Kalso EA
    Exp Neurol; 1997 Oct; 147(2):428-36. PubMed ID: 9344567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconstructing endogenous pain modulations.
    Mason P
    J Neurophysiol; 2005 Sep; 94(3):1659-63. PubMed ID: 16105951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventromedial medulla: pain modulation and beyond.
    Mason P
    J Comp Neurol; 2005 Dec; 493(1):2-8. PubMed ID: 16255004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Descending control of persistent pain: inhibitory or facilitatory?
    Vanegas H; Schaible HG
    Brain Res Brain Res Rev; 2004 Nov; 46(3):295-309. PubMed ID: 15571771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent postoperative pain: mechanisms and modulators.
    Gulur P; Nelli A
    Curr Opin Anaesthesiol; 2019 Oct; 32(5):668-673. PubMed ID: 31343465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of ERK signaling in rostral ventromedial medulla is dependent on afferent input from dorsal column pathway and contributes to acetic acid-induced visceral nociception.
    Kang Y; Zhao Y; Guo R; Zhang M; Wang Y; Mu Y; Wu A; Yue Y; Wu J; Wang Y
    Neurochem Int; 2013 Nov; 63(5):389-96. PubMed ID: 23876632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascending nociceptive control contributes to the antinociceptive effect of acupuncture in a rat model of acute pain.
    Tobaldini G; Aisengart B; Lima MM; Tambeli CH; Fischer L
    J Pain; 2014 Apr; 15(4):422-34. PubMed ID: 24412800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray.
    Yin JB; Wu HH; Dong YL; Zhang T; Wang J; Zhang Y; Wei YY; Lu YC; Wu SX; Wang W; Li YQ
    Front Neural Circuits; 2014; 8():137. PubMed ID: 25477786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual Differences in Temporal Summation of Pain Reflect Pronociceptive and Antinociceptive Brain Structure and Function.
    Cheng JC; Erpelding N; Kucyi A; DeSouza DD; Davis KD
    J Neurosci; 2015 Jul; 35(26):9689-700. PubMed ID: 26134651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states.
    Bee LA; Dickenson AH
    Neuroscience; 2007 Jul; 147(3):786-93. PubMed ID: 17570596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain projections from the medullary dorsal reticular nucleus: an anterograde and retrograde tracing study in the rat.
    Leite-Almeida H; Valle-Fernandes A; Almeida A
    Neuroscience; 2006 Jun; 140(2):577-95. PubMed ID: 16563637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical and subcortical modulation of pain.
    De Felice M; Ossipov MH
    Pain Manag; 2016 Apr; 6(2):111-20. PubMed ID: 26984039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending facilitation.
    Zhuo M
    Mol Pain; 2017 Jan; 13():1744806917699212. PubMed ID: 28326945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal networks and nociceptive processing in the dorsal horn of the spinal cord.
    Cordero-Erausquin M; Inquimbert P; Schlichter R; Hugel S
    Neuroscience; 2016 Dec; 338():230-247. PubMed ID: 27595888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostaglandin E2 in the midbrain periaqueductal gray produces hyperalgesia and activates pain-modulating circuitry in the rostral ventromedial medulla.
    Heinricher MM; Martenson ME; Neubert MJ
    Pain; 2004 Jul; 110(1-2):419-26. PubMed ID: 15275794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia.
    Lau BK; Vaughan CW
    Curr Opin Neurobiol; 2014 Dec; 29():159-64. PubMed ID: 25064178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-length tropomyosin-related kinase B expression in the brainstem in response to persistent inflammatory pain.
    Renn CL; Lin L; Thomas S; Dorsey SG
    Neuroreport; 2006 Jul; 17(11):1175-9. PubMed ID: 16837849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lentiviral vector-driven inhibition of 5-HT synthesis in B3 bulbo-spinal serotonergic projections - Consequences on nociception, inflammatory and neuropathic pain in rats.
    Gautier A; El Ouaraki H; Bazin N; Salam S; Vodjdani G; Bourgoin S; Pezet S; Bernard JF; Hamon M
    Exp Neurol; 2017 Feb; 288():11-24. PubMed ID: 27983993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of the periaqueductal gray in descending facilitatory and inhibitory controls of intramuscular hypertonic saline induced muscle nociception.
    Lei J; Sun T; Lumb BM; You HJ
    Exp Neurol; 2014 Jul; 257():88-94. PubMed ID: 24792920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.