These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26900352)

  • 1. Tissue composition effect on dose distribution in neutron brachytherapy/neutron capture therapy.
    Khosroabadi M; Farhood B; Ghorbani M; Hamzian N; Moghaddam HR; Davenport D
    Rep Pract Oncol Radiother; 2016; 21(1):8-16. PubMed ID: 26900352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed analysis of dose difference in using water as tissue-equivalent material in
    Gholamhossein IV; Firoozabadi Mohammad M; Mahdi G
    Rep Pract Oncol Radiother; 2019; 24(6):660-666. PubMed ID: 31719804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources.
    Ghorbani M; Salahshour F; Haghparast A; Moghaddas TA; Knaup C
    J Contemp Brachytherapy; 2014 Mar; 6(1):54-67. PubMed ID: 24790623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy.
    Rivard MJ
    Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric effects of composition, location and size of tissue heterogeneities on
    Karimi-Shahri K; Izadi-Vasafi GH; Firoozabadi MM; Ghorbani M
    Appl Radiat Isot; 2021 May; 171():109639. PubMed ID: 33667942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.
    Rivard MJ; Zamenhof RG
    Appl Radiat Isot; 2004 Nov; 61(5):753-7. PubMed ID: 15308139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron capture therapy: a comparison between dose enhancement of various agents, nanoparticles and chemotherapy drugs.
    Khosroabadi M; Ghorbani M; Rahmani F; Knaup C
    Australas Phys Eng Sci Med; 2014 Sep; 37(3):541-9. PubMed ID: 24961208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma.
    Candela-Juan C; Perez-Calatayud J; Ballester F; Rivard MJ
    Med Phys; 2013 Mar; 40(3):033901. PubMed ID: 23464344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition.
    Landry G; Reniers B; Murrer L; Lutgens L; Gurp EB; Pignol JP; Keller B; Beaulieu L; Verhaegen F
    Med Phys; 2010 Oct; 37(10):5188-98. PubMed ID: 21089752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron neutron capture enhancement of 252Cf brachytherapy.
    Beach JL; Schroy CB; Ashtari M; Harris MR; Maruyama Y
    Int J Radiat Oncol Biol Phys; 1990 Jun; 18(6):1421-7. PubMed ID: 2370192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutron dosimetry for a general 252Cf brachytherapy source.
    Rivard MJ
    Med Phys; 2000 Dec; 27(12):2803-15. PubMed ID: 11190964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo Study on the Effect of Various Neutron Capturers on Dose Distribution in Brachytherapy with
    Firoozabadi MM; Izadi Vasafi G; Karimi-Sh K
    J Biomed Phys Eng; 2017 Mar; 7(1):13-20. PubMed ID: 28451575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of tissue composition on dose distribution in electron beam radiotherapy.
    Ghorbani M; Tabatabaei ZS; Vejdani Noghreiyan A; Vosoughi H; Knaup C
    J Biomed Phys Eng; 2015 Mar; 5(1):15-24. PubMed ID: 25973407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy.
    Enger SA; Rezaei A; Munck af Rosenschöld P; Lundqvist H
    Med Phys; 2006 Jan; 33(1):46-51. PubMed ID: 16485408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative simulations of neutron dose in soft tissue and phantom materials for proton and carbon ion therapy with actively scanned beams.
    Hälg RA; Besserer J; Schneider U
    Med Phys; 2011 Jun; 38(6):3149-56. PubMed ID: 21815389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy.
    Rivard MJ; Melhus CS; Zinkin HD; Stapleford LJ; Evans KE; Wazer DE; Odlozilíková A
    Radiat Res; 2005 Sep; 164(3):319-23. PubMed ID: 16137205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.
    Burmeister J; Kota C; Maughan RL
    Radiat Res; 2005 Sep; 164(3):312-8. PubMed ID: 16137204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical dosimetry of an epithermal neutron beam for neutron capture therapy: dose distributions under reference conditions.
    Raaijmakers CP; Konijnenberg MW; Mijnheer BJ
    Int J Radiat Oncol Biol Phys; 1997 Mar; 37(4):941-51. PubMed ID: 9128973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy.
    Farhood B; Ghorbani M
    J Contemp Brachytherapy; 2015 Jan; 6(4):377-85. PubMed ID: 25834582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dosimetry of 252Cf sources for neutron radiotherapy with and without augmentation by boron neutron capture therapy.
    Yanch JC; Zamenhof RG
    Radiat Res; 1992 Sep; 131(3):249-56. PubMed ID: 1438684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.