These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26900524)

  • 1. Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector.
    Gaigalas AK; Wang L; Karpiak V; Zhang YZ; Choquette S
    J Res Natl Inst Stand Technol; 2012; 117():202-15. PubMed ID: 26900524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Scattering and Absorption Cross Sections of Microspheres for Wavelengths between 240 nm and 800 nm.
    Gaigalas AK; Wang L; Choquette S
    J Res Natl Inst Stand Technol; 2013; 118():1-14. PubMed ID: 26401421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Scattering and Absorption Cross Sections of Dyed Microspheres.
    Gaigalas AK; Choquette S; Zhang YZ
    J Res Natl Inst Stand Technol; 2013; 118():15-28. PubMed ID: 26401422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Absorption and Scattering With an Integrating Sphere Detector: Application to Microalgae.
    Gaigalas AK; He HJ; Wang L
    J Res Natl Inst Stand Technol; 2009; 114(2):69-81. PubMed ID: 27504214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimising contributions from scattering in infrared spectra by means of an integrating sphere.
    Dazzi A; Deniset-Besseau A; Lasch P
    Analyst; 2013 Jul; 138(14):4191-201. PubMed ID: 23757480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the Fluorescence Quantum Yield Using a Spectrometer With an Integrating Sphere Detector.
    Gaigalas AK; Wang L
    J Res Natl Inst Stand Technol; 2008; 113(1):17-28. PubMed ID: 27096110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mie and Rayleigh modeling of visible-light scattering in neonatal skin.
    Saidi IS; Jacques SL; Tittel FK
    Appl Opt; 1995 Nov; 34(31):7410-8. PubMed ID: 21060615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a laboratory spectral backscattering instrument: design and simulation.
    Kim M; Philpot WD
    Appl Opt; 2005 Nov; 44(32):6952-61. PubMed ID: 16294972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Goniometer for determination of the spectrally resolved scattering phase function of suspended particles.
    Nothelfer S; Foschum F; Kienle A
    Rev Sci Instrum; 2019 Aug; 90(8):083110. PubMed ID: 31472625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mie scattering revisited: Study of bichromatic Mie scattering of electromagnetic waves by a distribution of spherical particles.
    Olivares IE; Carrazana P
    Rev Sci Instrum; 2020 Aug; 91(8):083112. PubMed ID: 32872902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forward scattering measurement device with a high angular resolution.
    Roßkamp D; Truffer F; Bolay S; Geiser M
    Opt Express; 2007 Mar; 15(5):2683-90. PubMed ID: 19532505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of differential scattering cross section using a ring transducer.
    Jansson TT; Mast TD; Waag RC
    J Acoust Soc Am; 1998 Jun; 103(6):3169-79. PubMed ID: 9637027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light scattering signatures of individual spheres on optically smooth conducting surfaces.
    Weber DC; Hirleman ED
    Appl Opt; 1988 Oct; 27(19):4019-26. PubMed ID: 20539509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns in Mie scattering: evolution when normalized by the Rayleigh cross section.
    Berg MJ; Sorensen CM; Chakrabarti A
    Appl Opt; 2005 Dec; 44(34):7487-93. PubMed ID: 16353823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual compartment cuvette system for correcting scattering in whole-cell absorbance spectroscopy of photosynthetic microorganisms.
    Hervey JRD; Bombelli P; Lea-Smith DJ; Hulme AK; Hulme NR; Rullay AK; Keighley R; Howe CJ
    Photosynth Res; 2022 Jan; 151(1):61-69. PubMed ID: 34390453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of light absorption by aquatic particles in the near-infrared spectral region.
    Tassan S; Ferrari GM
    Appl Opt; 2003 Aug; 42(24):4802-10. PubMed ID: 12952323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorbance spectroscopy of light scattering samples placed inside an integrating sphere for wide dynamic range absorbance measurement.
    Mori A; Yamashita K; Tabata Y; Seto K; Tokunaga E
    Rev Sci Instrum; 2021 Dec; 92(12):123103. PubMed ID: 34972399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly accurate scattering spectra of strongly absorbing samples obtained using an integrating sphere system by considering the angular distribution of diffusely reflected light.
    Fukutomi D; Ishii K; Awazu K
    Lasers Med Sci; 2015 May; 30(4):1335-40. PubMed ID: 25772249
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.