BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26900535)

  • 1. Compartmental and Data-Based Modeling of Cerebral Hemodynamics: Linear Analysis.
    Henley BC; Shin DC; Zhang R; Marmarelis VZ
    IEEE Access; 2015; 3():2317-2332. PubMed ID: 26900535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of dynamic cerebral autoregulation and CO
    Marmarelis VZ; Shin DC; Oesterreich M; Mueller M
    J Appl Physiol (1985); 2020 Feb; 128(2):397-409. PubMed ID: 31917625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmental and Data-Based Modeling of Cerebral Hemodynamics: Nonlinear Analysis.
    Henley BC; Shin DC; Zhang R; Marmarelis VZ
    IEEE Trans Biomed Eng; 2017 May; 64(5):1078-1088. PubMed ID: 27411214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Model-Based Indices of Cerebral Autoregulation and Vasomotor Reactivity Using Transcranial Doppler versus Near-Infrared Spectroscopy in Patients with Amnestic Mild Cognitive Impairment.
    Marmarelis VZ; Shin DC; Tarumi T; Zhang R
    J Alzheimers Dis; 2017; 56(1):89-105. PubMed ID: 27911329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-based modeling of cerebral hemodynamics quantifies impairment of cerebral blood flow regulation in type-2 diabetes.
    Marmarelis VZ; Shin DC; Kang Y; Novak V
    J Cereb Blood Flow Metab; 2024 May; ():271678X241254716. PubMed ID: 38748923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysregulation of CO2-Driven Heart-Rate Chemoreflex Is Related Closely to Impaired CO2 Dynamic Vasomotor Reactivity in Mild Cognitive Impairment Patients.
    Marmarelis VZ; Shin DC; Zhang R
    J Alzheimers Dis; 2020; 75(3):855-870. PubMed ID: 32333588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling.
    Mitsis GD; Zhang R; Levine BD; Marmarelis VZ
    J Appl Physiol (1985); 2006 Jul; 101(1):354-66. PubMed ID: 16514006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-loop dynamic modeling of cerebral hemodynamics.
    Marmarelis VZ; Shin DC; Orme ME; Zhang R
    Ann Biomed Eng; 2013 May; 41(5):1029-48. PubMed ID: 23292615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear and nonlinear modeling of cerebral flow autoregulation using principal dynamic modes.
    Marmarelis V; Shin D; Zhang R
    Open Biomed Eng J; 2012; 6():42-55. PubMed ID: 22723806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear, multiple-input modeling of cerebral hemodynamics during baseline and hypercapnia in young and post-menopausal women.
    Mitsis GD; Debert CT; Hajo MI; Marmarelis VZ; Poulin MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2855-8. PubMed ID: 18002590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Dynamic Relationship Between Cortical Oxygenation and End-Tidal
    Marmarelis VZ; Shin DC; Zhang R
    Front Physiol; 2021; 12():772456. PubMed ID: 34955886
    [No Abstract]   [Full Text] [Related]  

  • 12. Dynamic cerebral autoregulation is governed by two time constants: Arterial transit time and feedback time constant.
    Payne SJ
    J Physiol; 2024 May; 602(9):1953-1966. PubMed ID: 38630963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-varying modeling of cerebral hemodynamics.
    Marmarelis VZ; Shin DC; Orme M; Rong Zhang
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):694-704. PubMed ID: 24184697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.
    Kostoglou K; Debert CT; Poulin MJ; Mitsis GD
    Med Eng Phys; 2014 May; 36(5):592-600. PubMed ID: 24291338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced-order modeling and analysis of dynamic cerebral autoregulation via diffusion maps.
    Dos Santos KRM; Katsidoniotaki MI; Miller EC; Petersen NH; Marshall RS; Kougioumtzoglou IA
    Physiol Meas; 2023 Apr; 44(4):. PubMed ID: 36963111
    [No Abstract]   [Full Text] [Related]  

  • 16. Using a reference tissue model with spatial constraint to quantify [11C]Pittsburgh compound B PET for early diagnosis of Alzheimer's disease.
    Zhou Y; Resnick SM; Ye W; Fan H; Holt DP; Klunk WE; Mathis CA; Dannals R; Wong DF
    Neuroimage; 2007 Jun; 36(2):298-312. PubMed ID: 17449282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative representation of neural activation in multivariate models of neurovascular coupling in humans.
    Panerai RB; Hanby MF; Robinson TG; Haunton VJ
    J Neurophysiol; 2019 Aug; 122(2):833-843. PubMed ID: 31242062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A network-based model of dynamic cerebral autoregulation.
    Daher A; Payne S
    Microvasc Res; 2023 May; 147():104503. PubMed ID: 36773930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of pharmacokinetic modeling strategies for in-vivo quantification of tau with the radiotracer [
    Guehl NJ; Wooten DW; Yokell DL; Moon SH; Dhaynaut M; Katz S; Moody KA; Gharagouzloo C; Kas A; Johnson KA; El Fakhri G; Normandin MD
    Eur J Nucl Med Mol Imaging; 2019 Sep; 46(10):2099-2111. PubMed ID: 31332496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic effects of cholinergic blockade upon cerebral blood flow autoregulation in healthy adults.
    Marmarelis VZ; Shin DC; Hamner JW; Tan CO
    Front Physiol; 2022; 13():1015544. PubMed ID: 36406984
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.