These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 26900757)
1. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes. Hu Z; Comeras JMML; Park H; Tang J; Afzali A; Tulevski GS; Hannon JB; Liehr M; Han SJ Nat Nanotechnol; 2016 Jun; 11(6):559-565. PubMed ID: 26900757 [TBL] [Abstract][Full Text] [Related]
2. Highly Secure Physically Unclonable Cryptographic Primitives Based on Interfacial Magnetic Anisotropy. Chen H; Song M; Guo Z; Li R; Zou Q; Luo S; Zhang S; Luo Q; Hong J; You L Nano Lett; 2018 Nov; 18(11):7211-7216. PubMed ID: 30365330 [TBL] [Abstract][Full Text] [Related]
3. Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS Alharbi A; Armstrong D; Alharbi S; Shahrjerdi D ACS Nano; 2017 Dec; 11(12):12772-12779. PubMed ID: 29144734 [TBL] [Abstract][Full Text] [Related]
4. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Cao Q; Han SJ; Tulevski GS; Zhu Y; Lu DD; Haensch W Nat Nanotechnol; 2013 Mar; 8(3):180-6. PubMed ID: 23353673 [TBL] [Abstract][Full Text] [Related]
5. Random Organic Nanolaser Arrays for Cryptographic Primitives. Feng J; Wen W; Wei X; Jiang X; Cao M; Wang X; Zhang X; Jiang L; Wu Y Adv Mater; 2019 Sep; 31(36):e1807880. PubMed ID: 31328840 [TBL] [Abstract][Full Text] [Related]
10. High-density integration of carbon nanotubes via chemical self-assembly. Park H; Afzali A; Han SJ; Tulevski GS; Franklin AD; Tersoff J; Hannon JB; Haensch W Nat Nanotechnol; 2012 Dec; 7(12):787-91. PubMed ID: 23103933 [TBL] [Abstract][Full Text] [Related]
11. Heteronanostructured Field-Effect Transistors for Enhancing Entropy and Parameter Space in Electrical Unclonable Primitives. Park J; Leem JW; Park M; Kim JO; Ku Z; Chegal W; Kang SW; Kim YL ACS Nano; 2024 Jan; 18(1):1041-1053. PubMed ID: 38117976 [TBL] [Abstract][Full Text] [Related]
12. Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. Tulevski GS; Hannon J; Afzali A; Chen Z; Avouris P; Kagan CR J Am Chem Soc; 2007 Oct; 129(39):11964-8. PubMed ID: 17824611 [TBL] [Abstract][Full Text] [Related]
13. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278 [TBL] [Abstract][Full Text] [Related]
14. Entropy Sources Based on Silicon Chips: True Random Number Generator and Physical Unclonable Function. Cao Y; Liu W; Qin L; Liu B; Chen S; Ye J; Xia X; Wang C Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359655 [TBL] [Abstract][Full Text] [Related]
15. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. Che Y; Wang C; Liu J; Liu B; Lin X; Parker J; Beasley C; Wong HS; Zhou C ACS Nano; 2012 Aug; 6(8):7454-62. PubMed ID: 22849386 [TBL] [Abstract][Full Text] [Related]
19. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Koo JH; Song JK; Kim DH Nanotechnology; 2019 Mar; 30(13):132001. PubMed ID: 30605897 [TBL] [Abstract][Full Text] [Related]
20. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Kanungo M; Lu H; Malliaras GG; Blanchet GB Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]