BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 26900866)

  • 1. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway.
    Chan P; Han X; Zheng B; DeRan M; Yu J; Jarugumilli GK; Deng H; Pan D; Luo X; Wu X
    Nat Chem Biol; 2016 Apr; 12(4):282-9. PubMed ID: 26900866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palmitoylation of TEAD Transcription Factors Is Required for Their Stability and Function in Hippo Pathway Signaling.
    Noland CL; Gierke S; Schnier PD; Murray J; Sandoval WN; Sagolla M; Dey A; Hannoush RN; Fairbrother WJ; Cunningham CN
    Structure; 2016 Jan; 24(1):179-186. PubMed ID: 26724994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine S-Glutathionylation Promotes Stability and Activation of the Hippo Downstream Effector Transcriptional Co-activator with PDZ-binding Motif (TAZ).
    Gandhirajan RK; Jain M; Walla B; Johnsen M; Bartram MP; Huynh Anh M; Rinschen MM; Benzing T; Schermer B
    J Biol Chem; 2016 May; 291(22):11596-607. PubMed ID: 27048650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the Hippo Pathway Transcription Factor TEAD.
    Lin KC; Park HW; Guan KL
    Trends Biochem Sci; 2017 Nov; 42(11):862-872. PubMed ID: 28964625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric Modulation of the YAP/TAZ-TEAD Interaction by Palmitoylation and Small-Molecule Inhibitors.
    Mills KR; Misra J; Torabifard H
    J Phys Chem B; 2024 Apr; 128(16):3795-3806. PubMed ID: 38606592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor.
    Valencia-Sama I; Zhao Y; Lai D; Janse van Rensburg HJ; Hao Y; Yang X
    J Biol Chem; 2015 Jul; 290(27):16906-17. PubMed ID: 25995450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway.
    Chen L; Loh PG; Song H
    Protein Cell; 2010 Dec; 1(12):1073-83. PubMed ID: 21213102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing transcriptional and post-transcriptional roles for Scalloped in binary Hippo-dependent neural fate decisions.
    Xie B; Morton DB; Cook TA
    Dev Biol; 2019 Nov; 455(1):51-59. PubMed ID: 31265830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation.
    Lin KC; Moroishi T; Meng Z; Jeong HS; Plouffe SW; Sekido Y; Han J; Park HW; Guan KL
    Nat Cell Biol; 2017 Jul; 19(8):996-1002. PubMed ID: 28752853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of transgenic lines to monitor and manipulate Yap/Taz-Tead activity in zebrafish reveals both evolutionarily conserved and divergent functions of the Hippo pathway.
    Miesfeld JB; Link BA
    Mech Dev; 2014 Aug; 133():177-88. PubMed ID: 24560909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes.
    Pobbati AV; Chan SW; Lee I; Song H; Hong W
    Structure; 2012 Jul; 20(7):1135-40. PubMed ID: 22632831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4.
    Li Y; Liu S; Ng EY; Li R; Poulsen A; Hill J; Pobbati AV; Hung AW; Hong W; Keller TH; Kang C
    Biochem J; 2018 Jun; 475(12):2043-2055. PubMed ID: 29760238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell contact and Nf2/Merlin-dependent regulation of TEAD palmitoylation and activity.
    Kim NG; Gumbiner BM
    Proc Natl Acad Sci U S A; 2019 May; 116(20):9877-9882. PubMed ID: 31043565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo.
    Manning SA; Dent LG; Kondo S; Zhao ZW; Plachta N; Harvey KF
    Curr Biol; 2018 May; 28(10):1651-1660.e4. PubMed ID: 29754899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hippo Pathway and YAP/TAZ-TEAD Protein-Protein Interaction as Targets for Regenerative Medicine and Cancer Treatment.
    Santucci M; Vignudelli T; Ferrari S; Mor M; Scalvini L; Bolognesi ML; Uliassi E; Costi MP
    J Med Chem; 2015 Jun; 58(12):4857-73. PubMed ID: 25719868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hippo-YAP pathway: new connections between regulation of organ size and cancer.
    Zhao B; Lei QY; Guan KL
    Curr Opin Cell Biol; 2008 Dec; 20(6):638-46. PubMed ID: 18955139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of a universal size-control mechanism in Drosophila and mammals.
    Dong J; Feldmann G; Huang J; Wu S; Zhang N; Comerford SA; Gayyed MF; Anders RA; Maitra A; Pan D
    Cell; 2007 Sep; 130(6):1120-33. PubMed ID: 17889654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brahma regulates the Hippo pathway activity through forming complex with Yki-Sd and regulating the transcription of Crumbs.
    Zhu Y; Li D; Wang Y; Pei C; Liu S; Zhang L; Yuan Z; Zhang P
    Cell Signal; 2015 Mar; 27(3):606-13. PubMed ID: 25496831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine long-chain fatty acylation regulates the TEAD transcription factor.
    Noritsugu K; Suzuki T; Dodo K; Ohgane K; Ichikawa Y; Koike K; Morita S; Umehara T; Ogawa K; Sodeoka M; Dohmae N; Yoshida M; Ito A
    Cell Rep; 2023 Apr; 42(4):112388. PubMed ID: 37060904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function.
    Watt KI; Goodman CA; Hornberger TA; Gregorevic P
    Exerc Sport Sci Rev; 2018 Apr; 46(2):92-96. PubMed ID: 29346163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.