These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26900982)

  • 1. Carbon and nitrogen removal from glucose-glycine melanoidins solution as a model of distillery wastewater by catalytic wet air oxidation.
    Phuong Thu L; Michèle B
    J Hazard Mater; 2016 Jun; 310():108-16. PubMed ID: 26900982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts.
    Fontanier V; Zalouk S; Barbati S
    J Environ Sci (China); 2011; 23(3):520-8. PubMed ID: 21520823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.
    Liu WM; Hu YQ; Tu ST
    J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.
    Suárez-Ojeda ME; Kim J; Carrera J; Metcalfe IS; Font J
    J Hazard Mater; 2007 Jun; 144(3):655-62. PubMed ID: 17363148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania.
    Song A; Lu G
    Environ Technol; 2015; 36(9-12):1160-6. PubMed ID: 25358013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.
    Yang M; Sun Y; Xu AH; Lu XY; Du HZ; Sun CL; Li C
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):66-70. PubMed ID: 17593307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-catalyzed wet air oxidation of biomethanated distillery wastewater for enhanced biogas recovery.
    Bhoite GM; Vaidya PD
    J Environ Manage; 2018 Nov; 226():241-248. PubMed ID: 30121459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.
    Li N; Descorme C; Besson M
    J Hazard Mater; 2007 Jul; 146(3):602-9. PubMed ID: 17513043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic wet air oxidation for the treatment of emulsifying wastewater.
    Zhao JF; Chen L; Lu YC; Tang WW
    J Environ Sci (China); 2005; 17(4):576-9. PubMed ID: 16158582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.
    Yadav BR; Garg A
    Environ Technol; 2016; 37(8):1018-25. PubMed ID: 26508075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes.
    Singh N; Petrinic I; Hélix-Nielsen C; Basu S; Balakrishnan M
    Water Res; 2018 Mar; 130():271-280. PubMed ID: 29241113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wet air oxidation of epoxy acrylate monomer industrial wastewater.
    Yang S; Liu Z; Huang X; Zhang B
    J Hazard Mater; 2010 Jun; 178(1-3):786-91. PubMed ID: 20207076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ammonia removal in the catalytic wet air oxygen process of landfill leachates with Co/Bi catalyst.
    Li Y; Liu L; Huang GH; Zhu L
    Water Sci Technol; 2006; 54(8):147-54. PubMed ID: 17163023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wet air oxidation and catalytic wet air oxidation for dyes degradation.
    Ovejero G; Sotelo JL; Rodríguez A; Vallet A; García J
    Environ Sci Pollut Res Int; 2011 Nov; 18(9):1518-26. PubMed ID: 21553036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic wet-air oxidation of a chemical plant wastewater over platinum-based catalysts.
    Cybulski A; Trawczyński J
    Water Environ Res; 2006 Jan; 78(1):12-8. PubMed ID: 16553161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pretreatment of apramycin wastewater by catalytic wet air oxidation.
    Yang SX; Feng YJ; Wan JF; Lin QY; Zhu WP; Jiang ZP
    J Environ Sci (China); 2005; 17(4):623-6. PubMed ID: 16158592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3 catalysts.
    Sriprom P; Neramittagapong S; Lin C; Wantala K; Neramittagapong A; Grisdanurak N
    J Air Waste Manag Assoc; 2015 Jul; 65(7):828-36. PubMed ID: 26079556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts.
    Tu Y; Xiong Y; Tian S; Kong L; Descorme C
    J Hazard Mater; 2014 Jul; 276():88-96. PubMed ID: 24862472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.
    Yang S; Zhu W; Wang J; Chen Z
    J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wet air oxidation of cresylic spent caustic - A model compound study over graphene oxide (GO) and ruthenium/GO catalysts.
    Barge AS; Vaidya PD
    J Environ Manage; 2018 Apr; 212():479-489. PubMed ID: 29459340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.