BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 26901075)

  • 1. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.
    Wang YJ; Dang F; Zhao JT; Zhong H
    Environ Pollut; 2016 Jun; 213():232-239. PubMed ID: 26901075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions.
    Wang Y; Dang F; Zhong H; Wei Z; Li P
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4602-8. PubMed ID: 26520099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil.
    Wang Y; Chen Z; Wu Y; Zhong H
    Sci Total Environ; 2019 Dec; 697():134143. PubMed ID: 31476499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rice root exudates affect microbial methylmercury production in paddy soils.
    Zhao JY; Ye ZH; Zhong H
    Environ Pollut; 2018 Nov; 242(Pt B):1921-1929. PubMed ID: 30072222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland.
    Li Y; Hu W; Zhao J; Chen Q; Wang W; Li B; Li YF
    Ecotoxicol Environ Saf; 2019 Oct; 182():109447. PubMed ID: 31325809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil.
    Wang Y; Dang F; Evans RD; Zhong H; Zhao J; Zhou D
    Sci Rep; 2016 Jan; 6():19477. PubMed ID: 26778218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur-driven methylmercury production in paddies continues following soil oxidation.
    Tang W; Tang C; Lei P
    J Environ Sci (China); 2022 Sep; 119():166-174. PubMed ID: 35934461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools.
    Liu J; Wang J; Ning Y; Yang S; Wang P; Shaheen SM; Feng X; Rinklebe J
    Environ Int; 2019 Aug; 129():461-469. PubMed ID: 31154148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochar amendment reduced methylmercury accumulation in rice plants.
    Shu R; Wang Y; Zhong H
    J Hazard Mater; 2016 Aug; 313():1-8. PubMed ID: 27045620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selenium-amended biochar mitigates inorganic mercury and methylmercury accumulation in rice (Oryza sativa L.).
    Lv W; Zhan T; Abdelhafiz MA; Feng X; Meng B
    Environ Pollut; 2021 Dec; 291():118259. PubMed ID: 34600068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan.
    Su YB; Chang WC; Hsi HC; Lin CC
    Chemosphere; 2016 Jul; 154():375-384. PubMed ID: 27070857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China.
    Yin D; He T; Yin R; Zeng L
    J Environ Sci (China); 2018 Jun; 68():194-205. PubMed ID: 29908739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.).
    Xu X; Yan M; Liang L; Lu Q; Han J; Liu L; Feng X; Guo J; Wang Y; Qiu G
    Environ Pollut; 2019 Jun; 249():647-654. PubMed ID: 30933762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses.
    Tang W; Dang F; Evans D; Zhong H; Xiao L
    Chemosphere; 2017 Feb; 169():369-376. PubMed ID: 27886539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils.
    Liu YR; Dong JX; Han LL; Zheng YM; He JZ
    Environ Pollut; 2016 Feb; 209():53-9. PubMed ID: 26629646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.).
    Wang Y; Chen L; Chen Y; Xue Y; Liu G; Zheng X; Zhou L; Zhong H
    Sci Total Environ; 2023 May; 874():162459. PubMed ID: 36871735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?
    Li Y; Zhao J; Zhong H; Wang Y; Li H; Li YF; Liem-Nguyen V; Jiang T; Zhang Z; Gao Y; Chai Z
    Environ Sci Technol; 2019 Feb; 53(4):1844-1852. PubMed ID: 30636405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic fertilizer amendment increases methylmercury accumulation in rice plants.
    Li Y; He X; Wang Y; Guan J; Guo J; Xu B; Chen YH; Wang G
    Chemosphere; 2020 Jun; 249():126166. PubMed ID: 32062560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury and Sulfur Redox Cycling Affect Methylmercury Levels in Rice Paddy Soils across a Contamination Gradient.
    Liu J; Chen J; Poulain AJ; Pu Q; Hao Z; Meng B; Feng X
    Environ Sci Technol; 2023 May; 57(21):8149-8160. PubMed ID: 37194595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar amendment mitigates the health risks of dietary methylmercury exposure from rice consumption in mercury-contaminated areas.
    Wang Y; Sun Y; He T; Deng H; Wang Z; Wang J; Zheng X; Zhou L; Zhong H
    Environ Pollut; 2020 Dec; 267():115547. PubMed ID: 33254602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.