BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 26901075)

  • 41. Mercury and methylmercury in Hg-contaminated paddy soil and their uptake in rice as regulated by DOM from different agricultural sources.
    Yang N; Hu J; Yin D; He T; Tian X; Ran S; Zhou X
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77181-77192. PubMed ID: 37249779
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review.
    Tang Z; Fan F; Deng S; Wang D
    Ecotoxicol Environ Saf; 2020 Oct; 202():110950. PubMed ID: 32800226
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methylmercury photodegradation in paddy water: An overlooked process mitigating methylmercury risks.
    Zhong H; Zhou H; Li Y; Li C; Tsui MT; Mitchell CPJ; Zhou Y; Yang Y; Chen L; Ren H; Tang W
    Water Res; 2024 Apr; 253():121332. PubMed ID: 38377924
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice.
    Zhu H; Zhong H; Wu J
    Chemosphere; 2016 Jun; 152():259-64. PubMed ID: 26974480
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime.
    Beckers F; Mothes S; Abrigata J; Zhao J; Gao Y; Rinklebe J
    Sci Total Environ; 2019 Jul; 672():604-617. PubMed ID: 30970288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selenium- and chitosan-modified biochars reduce methylmercury contents in rice seeds with recruiting Bacillus to inhibit methylmercury production.
    Guo P; Du H; Zhao W; Xiong B; Wang M; He M; Flemetakis E; Hänsch R; Ma M; Rennenberg H; Wang D
    J Hazard Mater; 2024 Mar; 465():133236. PubMed ID: 38141298
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biochar-impacted sulfur cycling affects methylmercury phytoavailability in soils under different redox conditions.
    Wang Y; Zhang Y; Ok YS; Jiang T; Liu P; Shu R; Wang D; Cao X; Zhong H
    J Hazard Mater; 2021 Apr; 407():124397. PubMed ID: 33183839
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elevated methylmercury production in mercury-contaminated paddy soil resulted from the favorable dissolved organic matter variation created by algal decomposition.
    Hu J; Yang N; He T; Zhou X; Yin D; Wang Y; Zhou L
    Environ Pollut; 2023 May; 324():121415. PubMed ID: 36893976
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Overlooked Role of Putative Non-Hg Methylators in Predicting Methylmercury Production in Paddy Soils.
    Liu YR; Yang Z; Zhou X; Qu X; Li Z; Zhong H
    Environ Sci Technol; 2019 Nov; 53(21):12330-12338. PubMed ID: 31603332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Effects of Microbial Activities on Mercury Methylation in Farmland near Mercury Mining Area].
    Jia Q; Zhu XM; Wang Q; Fu HH; Hao YQ; He J; Yang ZL
    Huan Jing Ke Xue; 2017 Jul; 38(7):3020-3027. PubMed ID: 29964645
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China.
    Vishnivetskaya TA; Hu H; Van Nostrand JD; Wymore AM; Xu X; Qiu G; Feng X; Zhou J; Brown SD; Brandt CC; Podar M; Gu B; Elias DA
    Environ Sci Process Impacts; 2018 Apr; 20(4):673-685. PubMed ID: 29504614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Warming inhibits Hg
    Zhang Q; Pu Q; Hao Z; Liu J; Zhang K; Meng B; Feng X
    Sci Total Environ; 2024 Jun; 930():172832. PubMed ID: 38688367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DOM influences Hg methylation in paddy soils across a Hg contamination gradient.
    Abdelhafiz MA; Liu J; Jiang T; Pu Q; Aslam MW; Zhang K; Meng B; Feng X
    Environ Pollut; 2023 Apr; 322():121237. PubMed ID: 36758923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China.
    Horvat M; Nolde N; Fajon V; Jereb V; Logar M; Lojen S; Jacimovic R; Falnoga I; Liya Q; Faganeli J; Drobne D
    Sci Total Environ; 2003 Mar; 304(1-3):231-56. PubMed ID: 12663187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg.
    Wang X; Ye Z; Li B; Huang L; Meng M; Shi J; Jiang G
    Environ Sci Technol; 2014; 48(3):1878-85. PubMed ID: 24383449
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of incorporating differently-treated rice straw on phytoavailability of methylmercury in soil.
    Shu R; Dang F; Zhong H
    Chemosphere; 2016 Feb; 145():457-63. PubMed ID: 26694796
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice.
    Hu H; Xi B; Tan W
    Environ Pollut; 2021 Oct; 286():117290. PubMed ID: 33984776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic characteristics and predictive models of methylmercury production in paddy soils.
    Du S; Wang X; Zhang T; Ding C
    Environ Pollut; 2019 Oct; 253():424-428. PubMed ID: 31325887
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level.
    Zhao J; Li Y; Li Y; Gao Y; Li B; Hu Y; Zhao Y; Chai Z
    Metallomics; 2014 Oct; 6(10):1951-7. PubMed ID: 25142173
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased Methylmercury Accumulation in Rice after Straw Amendment.
    Tang W; Hintelmann H; Gu B; Feng X; Liu Y; Gao Y; Zhao J; Zhu H; Lei P; Zhong H
    Environ Sci Technol; 2019 Jun; 53(11):6144-6153. PubMed ID: 30983351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.