BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 26901115)

  • 1. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM indentation study of breast cancer cells.
    Li QS; Lee GY; Ong CN; Lim CT
    Biochem Biophys Res Commun; 2008 Oct; 374(4):609-13. PubMed ID: 18656442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion.
    Omidvar R; Tafazzoli-Shadpour M; Shokrgozar MA; Rostami M
    J Biomech; 2014 Oct; 47(13):3373-9. PubMed ID: 25169659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating cancer cell mechanics and actin cytoskeleton structure by chemical and mechanical stimulations.
    Azadi S; Tafazzoli-Shadpour M; Soleimani M; Warkiani ME
    J Biomed Mater Res A; 2019 Aug; 107(8):1569-1581. PubMed ID: 30884131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear Cellular Mechanical Behavior Adaptation to Substrate Mechanics Identified by Atomic Force Microscope.
    Mollaeian K; Liu Y; Bi S; Wang Y; Ren J; Lu M
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging.
    Gavara N; Chadwick RS
    Biomech Model Mechanobiol; 2016 Jun; 15(3):511-23. PubMed ID: 26206449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-sensing analysis of cytoskeleton organization based on AFM data.
    Pogoda K; Jaczewska J; Wiltowska-Zuber J; Klymenko O; Zuber K; Fornal M; Lekka M
    Eur Biophys J; 2012 Jan; 41(1):79-87. PubMed ID: 22038077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Properties and Nanomotion of BT-20 and ZR-75 Breast Cancer Cells Studied by Atomic Force Microscopy and Optical Nanomotion Detection Method.
    Starodubtseva MN; Shkliarava NM; Chelnokova IA; Villalba MI; Krylov AY; Nadyrov EA; Kasas S
    Cells; 2023 Sep; 12(19):. PubMed ID: 37830577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology.
    Lasalvia M; Castellani S; D'Antonio P; Perna G; Carbone A; Colia AL; Maffione AB; Capozzi V; Conese M
    Exp Cell Res; 2016 Oct; 348(1):46-55. PubMed ID: 27590528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin cytoskeleton stiffness grades metastatic potential of ovarian carcinoma Hey A8 cells via nanoindentation mapping.
    Zhou ZL; Sun XX; Ma J; Tong MH; To SKY; Wong AST; Ngan AHW
    J Biomech; 2017 Jul; 60():219-226. PubMed ID: 28711162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the elastic Young's modulus and cytotoxicity variations in fibroblasts exposed to carbon-based nanomaterials.
    Pastrana HF; Cartagena-Rivera AX; Raman A; Ávila A
    J Nanobiotechnology; 2019 Feb; 17(1):32. PubMed ID: 30797235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytomechanical and topological investigation of MCF-7 cells by scanning force microscopy.
    Leporatti S; Vergara D; Zacheo A; Vergaro V; Maruccio G; Cingolani R; Rinaldi R
    Nanotechnology; 2009 Feb; 20(5):055103. PubMed ID: 19417334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the CXCR4 receptor on breast cancer cells.
    Wang B; Guo P; Auguste DT
    Biomaterials; 2015 Jul; 57():161-8. PubMed ID: 25916504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.
    Coceano G; Yousafzai MS; Ma W; Ndoye F; Venturelli L; Hussain I; Bonin S; Niemela J; Scoles G; Cojoc D; Ferrari E
    Nanotechnology; 2016 Feb; 27(6):065102. PubMed ID: 26683826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy.
    Wala J; Das S
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1523-1536. PubMed ID: 31907681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell elasticity with altered cytoskeletal architectures across multiple cell types.
    Grady ME; Composto RJ; Eckmann DM
    J Mech Behav Biomed Mater; 2016 Aug; 61():197-207. PubMed ID: 26874250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell stiffness determined by atomic force microscopy and its correlation with cell motility.
    Luo Q; Kuang D; Zhang B; Song G
    Biochim Biophys Acta; 2016 Sep; 1860(9):1953-60. PubMed ID: 27288584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.