BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26901408)

  • 1. Selective Surface Charge Sign Reversal on Metallic Carbon Nanotubes for Facile Ultrahigh Purity Nanotube Sorting.
    Wang J; Nguyen TD; Cao Q; Wang Y; Tan MY; Chan-Park MB
    ACS Nano; 2016 Mar; 10(3):3222-32. PubMed ID: 26901408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes.
    Qiu H; Maeda Y; Akasaka T
    J Am Chem Soc; 2009 Nov; 131(45):16529-33. PubMed ID: 19860464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers.
    Antaris AL; Seo JW; Green AA; Hersam MC
    ACS Nano; 2010 Aug; 4(8):4725-32. PubMed ID: 20669897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
    Samanta SK; Fritsch M; Scherf U; Gomulya W; Bisri SZ; Loi MA
    Acc Chem Res; 2014 Aug; 47(8):2446-56. PubMed ID: 25025887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gel electrophoresis using a selective radical for the separation of single-walled carbon nanotubes.
    Mesgari S; Sundramoorthy AK; Loo LS; Chan-Park MB
    Faraday Discuss; 2014; 173():351-63. PubMed ID: 25319125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemistry at single-walled carbon nanotubes: the role of band structure and quantum capacitance.
    Heller I; Kong J; Williams KA; Dekker C; Lemay SG
    J Am Chem Soc; 2006 Jun; 128(22):7353-9. PubMed ID: 16734491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective dispersion of large-diameter semiconducting single-walled carbon nanotubes with pyridine-containing copolymers.
    Berton N; Lemasson F; Poschlad A; Meded V; Tristram F; Wenzel W; Hennrich F; Kappes MM; Mayor M
    Small; 2014 Jan; 10(2):360-7. PubMed ID: 23913806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes.
    Yang F; Wang X; Si J; Zhao X; Qi K; Jin C; Zhang Z; Li M; Zhang D; Yang J; Zhang Z; Xu Z; Peng LM; Bai X; Li Y
    ACS Nano; 2017 Jan; 11(1):186-193. PubMed ID: 28114760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; AƤritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes.
    Yu A; Bekyarova E; Itkis ME; Fakhrutdinov D; Webster R; Haddon RC
    J Am Chem Soc; 2006 Aug; 128(30):9902-8. PubMed ID: 16866549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly effective separation of semiconducting carbon nanotubes verified via short-channel devices fabricated using dip-pen nanolithography.
    Park S; Lee HW; Wang H; Selvarasah S; Dokmeci MR; Park YJ; Cha SN; Kim JM; Bao Z
    ACS Nano; 2012 Mar; 6(3):2487-96. PubMed ID: 22352426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes.
    Li J; Ke CT; Liu K; Li P; Liang S; Finkelstein G; Wang F; Liu J
    ACS Nano; 2014 Aug; 8(8):8564-72. PubMed ID: 25111952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable and effective enrichment of semiconducting single-walled carbon nanotubes by a dual selective naphthalene-based azo dispersant.
    Sundramoorthy AK; Mesgari S; Wang J; Kumar R; Sk MA; Yeap SH; Zhang Q; Sze SK; Lim KH; Chan-Park MB
    J Am Chem Soc; 2013 Apr; 135(15):5569-81. PubMed ID: 23521315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes.
    Tang L; Li T; Li C; Ling L; Zhang K; Yao Y
    Nanoscale; 2015 Dec; 7(46):19699-704. PubMed ID: 26553394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H-bonded supramolecular polymer for the selective dispersion and subsequent release of large-diameter semiconducting single-walled carbon nanotubes.
    Pochorovski I; Wang H; Feldblyum JI; Zhang X; Antaris AL; Bao Z
    J Am Chem Soc; 2015 Apr; 137(13):4328-31. PubMed ID: 25815604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications.
    Chen Y; Zhang J
    Acc Chem Res; 2014 Aug; 47(8):2273-81. PubMed ID: 24926610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound.
    Toyoda S; Yamaguchi Y; Hiwatashi M; Tomonari Y; Murakami H; Nakashima N
    Chem Asian J; 2007 Jan; 2(1):145-9. PubMed ID: 17441147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorting carbon nanotubes for electronics.
    Martel R
    ACS Nano; 2008 Nov; 2(11):2195-9. PubMed ID: 19206382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.