BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 26901491)

  • 1. High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes.
    Zhao FY; Ji YL; Weng XD; Mi YF; Ye CC; An QF; Gao CJ
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6693-700. PubMed ID: 26901491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions.
    Bera A; Trivedi JS; Kumar SB; Chandel AKS; Haldar S; Jewrajka SK
    J Hazard Mater; 2018 Feb; 343():86-97. PubMed ID: 28946135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-pressure thin-film composite nanofiltration membranes with enhanced selectivity and antifouling property for effective dye/salt separation.
    Li J; Gong JL; Fang SY; Cao WC; Tang SQ; Qin M; Zhou HY; Wang YW
    J Colloid Interface Sci; 2023 Jul; 641():197-214. PubMed ID: 36933467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of Functionalized Halloysite Nanotubes (HNTs) into Thin-Film Nanocomposite (TFN) Nanofiltration Membranes for Water Softening.
    Atashgar A; Emadzadeh D; Akbari S; Kruczek B
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypiperazine-amide Nanofiltration Membrane Modified by Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs).
    Xue SM; Xu ZL; Tang YJ; Ji CH
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):19135-44. PubMed ID: 27387192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing Positively Charged Thin-Film Nanocomposite Nanofiltration Membranes with Enhanced Performance.
    Shao W; Liu C; Yu T; Xiong Y; Hong Z; Xie Q
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33137988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-channel capillary NF membrane with PAMAM-MWCNT-embedded inner polyamide skin layer for heavy metals removal.
    Zhang HZ; Xu ZL; Sun JY
    RSC Adv; 2018 Aug; 8(51):29455-29463. PubMed ID: 35548001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions.
    Kim HJ; Choi K; Baek Y; Kim DG; Shim J; Yoon J; Lee JC
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2819-29. PubMed ID: 24467487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of Polyamide Thin Film Nanocomposite Membrane Assisted by Tannic Acid-Fe
    Wu H; Sun H; Hong W; Mao L; Liu Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32255-32263. PubMed ID: 28862835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Performance of Thin-Film Nanofiltration Membranes with Embedded Montmorillonites.
    Ang MBMY; Deang ABG; Aquino RR; Basilia BA; Huang SH; Lee KR; Lai JY
    Membranes (Basel); 2020 Apr; 10(5):. PubMed ID: 32357447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tip and Inner Wall Modification of 4.9 nm Diameter Multi-Walled Carbon Nanotubes and Its Nanocomposite Polyamide Reverse Osmosis Membrane.
    Wang J; Yang D; Xu X; Li Q; Ling Q; Liu Q
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5591-5600. PubMed ID: 30961713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Increase of Solvent Flux and Rejection of Thin-Film Composite Membranes by Incorporation of Dopamine-Modified Mesoporous Silica.
    Tian Q; Mu W; Shi F; Li Y
    ACS Omega; 2021 Jun; 6(24):16241-16250. PubMed ID: 34179668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes.
    Lee HD; Kim HW; Cho YH; Park HB
    Small; 2014 Jul; 10(13):2653-60. PubMed ID: 24668882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.
    de Lannoy CF; Jassby D; Gloe K; Gordon AD; Wiesner MR
    Environ Sci Technol; 2013 Mar; 47(6):2760-8. PubMed ID: 23413920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of polyamide thin-film nanocomposite membranes with enhanced surface charge for nitrate ion removal from water resources.
    Ghaee A; Zerafat MM; Askari P; Sabbaghi S; Sadatnia B
    Environ Technol; 2017 Mar; 38(6):772-781. PubMed ID: 28191867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated Performance of Thin Film Nanocomposite Membranes Enabled by Modified Hydrophilic MOFs for Nanofiltration.
    Zhu J; Qin L; Uliana A; Hou J; Wang J; Zhang Y; Li X; Yuan S; Li J; Tian M; Lin J; Van der Bruggen B
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1975-1986. PubMed ID: 28026925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel positively charged composite nanofiltration membrane based on polyethyleneimine with a tunable active layer structure developed
    Jiang Z; Miao J; He Y; Tu K; Chen S; Zhang R; Zhang L; Yang H
    RSC Adv; 2019 Apr; 9(19):10796-10806. PubMed ID: 35515306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charged micropollutant removal with hollow fiber nanofiltration membranes based on polycation/polyzwitterion/polyanion multilayers.
    de Grooth J; Reurink DM; Ploegmakers J; de Vos WM; Nijmeijer K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17009-17. PubMed ID: 25203928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel positively charged membrane based on polyamide thin-film composite made by cross-linking for nanofiltration.
    Akbari A; Fakharshakeri Z; Mojallali Rostami SM
    Water Sci Technol; 2016; 73(4):776-89. PubMed ID: 26901720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer.
    Qiu M; He C
    J Hazard Mater; 2019 Apr; 367():339-347. PubMed ID: 30599406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.