BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26901642)

  • 1. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae.
    Rantasalo A; Czeizler E; Virtanen R; Rousu J; Lähdesmäki H; Penttilä M; Jäntti J; Mojzita D
    PLoS One; 2016; 11(2):e0148320. PubMed ID: 26901642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synthetic biology toolbox for tuning gene expression in yeast.
    Redden H; Morse N; Alper HS
    FEMS Yeast Res; 2015 Feb; 15(1):1-10. PubMed ID: 25047958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology.
    Blount BA; Weenink T; Vasylechko S; Ellis T
    PLoS One; 2012; 7(3):e33279. PubMed ID: 22442681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae.
    Leavitt JM; Tong A; Tong J; Pattie J; Alper HS
    Biotechnol J; 2016 Jul; 11(7):866-76. PubMed ID: 27152757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Synthetic Hybrid Promoter for Xylose-Regulated Control of Gene Expression in Saccharomyces Yeasts.
    Hector RE; Mertens JA
    Mol Biotechnol; 2017 Jan; 59(1):24-33. PubMed ID: 28012062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.
    Naseri G; Balazadeh S; Machens F; Kamranfar I; Messerschmidt K; Mueller-Roeber B
    ACS Synth Biol; 2017 Sep; 6(9):1742-1756. PubMed ID: 28531348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae.
    McIsaac RS; Gibney PA; Chandran SS; Benjamin KR; Botstein D
    Nucleic Acids Res; 2014 Apr; 42(6):e48. PubMed ID: 24445804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering.
    Dossani ZY; Reider Apel A; Szmidt-Middleton H; Hillson NJ; Deutsch S; Keasling JD; Mukhopadhyay A
    Yeast; 2018 Mar; 35(3):273-280. PubMed ID: 29084380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae.
    Teo WS; Chang MW
    Biotechnol Bioeng; 2014 Jan; 111(1):144-51. PubMed ID: 23860786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthetic biology framework for programming eukaryotic transcription functions.
    Khalil AS; Lu TK; Bashor CJ; Ramirez CL; Pyenson NC; Joung JK; Collins JJ
    Cell; 2012 Aug; 150(3):647-58. PubMed ID: 22863014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Toolkit for Precise, Multigene Control in
    Sanford A; Kiriakov S; Khalil AS
    ACS Synth Biol; 2022 Dec; 11(12):3912-3920. PubMed ID: 36367334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What Have We Learned About Synthetic Promoter Construction?
    Rushton PJ
    Methods Mol Biol; 2016; 1482():1-13. PubMed ID: 27557757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-structure analysis of ribosomal protein gene transcription.
    Zhao Y; McIntosh KB; Rudra D; Schawalder S; Shore D; Warner JR
    Mol Cell Biol; 2006 Jul; 26(13):4853-62. PubMed ID: 16782874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards combinatorial transcriptional engineering.
    Mehrotra R; Renganaath K; Kanodia H; Loake GJ; Mehrotra S
    Biotechnol Adv; 2017; 35(3):390-405. PubMed ID: 28300614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters.
    Blazeck J; Garg R; Reed B; Alper HS
    Biotechnol Bioeng; 2012 Nov; 109(11):2884-95. PubMed ID: 22565375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in an Abf1p binding site in the promoter of yeast RPO26 shift the transcription start sites and reduce the level of RPO26 mRNA.
    Nouraini S; Hu J; McBroom LD; Friesen JD
    Yeast; 1996 Oct; 12(13):1339-50. PubMed ID: 8923739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction and preliminary applications of a Saccharomyces cerevisiae detection plasmid using for screening promoter elements].
    Wang ZF; Wang ZB; Li LN; Jian-Mei AN; Wang-Wei ; Cheng KD; Kong JQ
    Yao Xue Xue Bao; 2013 Feb; 48(2):228-35. PubMed ID: 23672019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.