These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26901729)

  • 21. Mathematical models applied to the Cr(III) and Cr(VI) breakthrough curves.
    Ramirez C M; Pereira da Silva M; Ferreira L SG; Vasco E O
    J Hazard Mater; 2007 Jul; 146(1-2):86-90. PubMed ID: 17276593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles.
    Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ
    Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cr(VI) adsorption on the blends of Henna with chitosan microparticles: Experimental and statistical analysis.
    Davarnejad R; Karimi Dastnayi Z; Kennedy JF
    Int J Biol Macromol; 2018 Sep; 116():281-288. PubMed ID: 29729341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith.
    Suksabye P; Thiravetyan P; Nakbanpote W
    J Hazard Mater; 2008 Dec; 160(1):56-62. PubMed ID: 18406058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical modelling of Pb
    Igberase E; Osifo P; Ofomaja A
    Environ Technol; 2018 Dec; 39(24):3203-3220. PubMed ID: 28866961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of hexavalent chromium from wastewater by Fe0-nanoparticles-chitosan composite beads: characterization, kinetics and thermodynamics.
    Liu TY; Zhao L; Wang ZL
    Water Sci Technol; 2012; 66(5):1044-51. PubMed ID: 22797233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hexavalent chromium removal performance of anionic functionalized monolithic polymers: column adsorption, regeneration and modelling.
    Barlik N; Keskinler B; Kocakerim MM
    Water Sci Technol; 2016; 73(6):1279-86. PubMed ID: 27003067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of acid-activated water caltrop (Trapa natans) shell in fixed bed column for hexavalent chromium removal from simulated wastewater.
    Kumar S; Patra C; Narayanasamy S; Rajaraman PV
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):28042-28052. PubMed ID: 32410190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions.
    Zhang L; Luo H; Liu P; Fang W; Geng J
    Int J Biol Macromol; 2016 Jun; 87():586-96. PubMed ID: 26993532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan-derived carbonaceous material for highly efficient adsorption of chromium (VI) from aqueous solution.
    Shen F; Su J; Zhang X; Zhang K; Qi X
    Int J Biol Macromol; 2016 Oct; 91():443-9. PubMed ID: 27259645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of Cr(VI) by thermally activated weed Salvinia cucullata in a fixed-bed column.
    Baral SS; Das N; Ramulu TS; Sahoo SK; Das SN; Chaudhury GR
    J Hazard Mater; 2009 Jan; 161(2-3):1427-35. PubMed ID: 18571842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cr(VI) retention and transport through Fe(III)-coated natural zeolite.
    Du G; Li Z; Liao L; Hanson R; Leick S; Hoeppner N; Jiang WT
    J Hazard Mater; 2012 Jun; 221-222():118-23. PubMed ID: 22542779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromium removal with cross-linked chitosan adsorption and base-precipitation combination.
    Zhang H; Wang F; Jin X; Zhu Y; Li X; Zhou H
    Water Sci Technol; 2013; 67(12):2768-75. PubMed ID: 23787316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of novel modified magnetic chitosan particles and their adsorption performance toward Cr(VI).
    Zheng C; Zheng H; Wang Y; Wang Y; Qu W; An Q; Liu Y
    Bioresour Technol; 2018 Nov; 267():1-8. PubMed ID: 30005271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium.
    Sharma G; Naushad M; Al-Muhtaseb AH; Kumar A; Khan MR; Kalia S; Shweta ; Bala M; Sharma A
    Int J Biol Macromol; 2017 Feb; 95():484-493. PubMed ID: 27884673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles.
    Chowdhury SR; Yanful EK; Pratt AR
    J Hazard Mater; 2012 Oct; 235-236():246-56. PubMed ID: 22902142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Treatment of Cr( VI) in deoxygenated simulated groundwater using nanoscale zero-valent iron].
    Wu J; Tian XJ; Wang J; Jing CY
    Huan Jing Ke Xue; 2010 Mar; 31(3):645-52. PubMed ID: 20358821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent.
    Li K; Li P; Cai J; Xiao S; Yang H; Li A
    Chemosphere; 2016 Jul; 154():310-318. PubMed ID: 27060639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromate removal by an iron sorbent: mechanism and modeling.
    Smith E; Ghiassi K
    Water Environ Res; 2006 Jan; 78(1):84-93. PubMed ID: 16553170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective detoxification of hexavalent chromium using sulfate-crosslinked chitosan.
    Kahu S; Saravanan D; Jugade R
    Water Sci Technol; 2014; 70(12):2047-55. PubMed ID: 25521142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.