These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 26901804)
21. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Oshita K; Okumura T; Takaoka M; Fujimori T; Appels L; Dewil R Bioresour Technol; 2014 Nov; 171():175-81. PubMed ID: 25194911 [TBL] [Abstract][Full Text] [Related]
22. Automatic control and optimal operation for greenhouse gas mitigation in sustainable wastewater treatment plants: A review. Lu H; Wang H; Wu Q; Luo H; Zhao Q; Liu B; Si Q; Zheng S; Guo W; Ren N Sci Total Environ; 2023 Jan; 855():158849. PubMed ID: 36122730 [TBL] [Abstract][Full Text] [Related]
23. Eco-efficiency analysis of Spanish WWTPs using the LCA + DEA method. Lorenzo-Toja Y; Vázquez-Rowe I; Chenel S; Marín-Navarro D; Moreira MT; Feijoo G Water Res; 2015 Jan; 68():651-66. PubMed ID: 25462770 [TBL] [Abstract][Full Text] [Related]
24. Sludge degradation, nutrient removal and reduction of greenhouse gas emission by a Chironomus-Azolla wastewater treatment cascade. Hendriks L; van der Meer TV; Kraak MHS; Verdonschot PFM; Smolders AJP; Lamers LPM; Veraart AJ PLoS One; 2024; 19(5):e0301459. PubMed ID: 38805505 [TBL] [Abstract][Full Text] [Related]
25. Novel extended hybrid tool for real time control and practically support decisions to reduce GHG emissions in full scale wastewater treatment plants. Lancioni N; Szelag B; Sgroi M; Barbusiński K; Fatone F; Eusebi AL J Environ Manage; 2024 Aug; 365():121502. PubMed ID: 38936025 [TBL] [Abstract][Full Text] [Related]
26. Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Muñoz I; José Gómez M; Molina-Díaz A; Huijbregts MA; Fernández-Alba AR; García-Calvo E Chemosphere; 2008 Dec; 74(1):37-44. PubMed ID: 18951608 [TBL] [Abstract][Full Text] [Related]
27. Evaluating the effect of different operational strategies on the carbon footprint of wastewater treatment plants - case studies from northern Poland. Maktabifard M; Zaborowska E; Makinia J Water Sci Technol; 2019 Jun; 79(11):2211-2220. PubMed ID: 31318359 [TBL] [Abstract][Full Text] [Related]
28. Preliminary investigation of greenhouse gas emissions from the environmental sector in Taiwan. Fukushima Y; Liu PW; Tsai JH; Lee CF; Tseng TK J Air Waste Manag Assoc; 2008 Jan; 58(1):85-94. PubMed ID: 18236798 [TBL] [Abstract][Full Text] [Related]
29. An evaluation on the intra-day dynamics, seasonal variations and removal of selected pharmaceuticals and personal care products from urban wastewater treatment plants. Li WL; Zhang ZF; Ma WL; Liu LY; Song WW; Li YF Sci Total Environ; 2018 Nov; 640-641():1139-1147. PubMed ID: 30021279 [TBL] [Abstract][Full Text] [Related]
30. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). Zepon Tarpani RR; Azapagic A J Environ Manage; 2018 Jun; 215():258-272. PubMed ID: 29573676 [TBL] [Abstract][Full Text] [Related]
31. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. Adeleye AS; Xue J; Zhao Y; Taylor AA; Zenobio JE; Sun Y; Han Z; Salawu OA; Zhu Y J Hazard Mater; 2022 Feb; 424(Pt B):127284. PubMed ID: 34655870 [TBL] [Abstract][Full Text] [Related]
32. The trade-off between N Abulimiti A; Wang X; Kang J; Li L; Wu D; Li Z; Piao Y; Ren N Water Res; 2022 Sep; 223():118961. PubMed ID: 35973249 [TBL] [Abstract][Full Text] [Related]
33. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant. Masuda S; Suzuki S; Sano I; Li YY; Nishimura O Chemosphere; 2015 Dec; 140():167-73. PubMed ID: 25439128 [TBL] [Abstract][Full Text] [Related]
34. [Study on greenhouse gas emissions from urban waste disposal system: a case study in Xiamen]. Yu Y; Cui SH; Lin JY; Li F Huan Jing Ke Xue; 2012 Sep; 33(9):3288-94. PubMed ID: 23243894 [TBL] [Abstract][Full Text] [Related]
35. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge. Chen WH; Yang JH; Yuan CS; Yang YH Environ Sci Pollut Res Int; 2016 Oct; 23(20):20449-20461. PubMed ID: 27460025 [TBL] [Abstract][Full Text] [Related]
36. Estimation of greenhouse gas emissions from a wastewater treatment plant using membrane bioreactor technology. Chen YC Water Environ Res; 2019 Feb; 91(2):111-118. PubMed ID: 30735301 [TBL] [Abstract][Full Text] [Related]
37. Shadow prices of emerging pollutants in wastewater treatment plants: Quantification of environmental externalities. Bellver-Domingo A; Fuentes R; Hernández-Sancho F J Environ Manage; 2017 Dec; 203(Pt 1):439-447. PubMed ID: 28837910 [TBL] [Abstract][Full Text] [Related]
38. Greenhouse gas emissions from two hydroelectric reservoirs in Mediterranean region. Samiotis G; Pekridis G; Kaklidis N; Trikoilidou E; Taousanidis N; Amanatidou E Environ Monit Assess; 2018 May; 190(6):363. PubMed ID: 29804153 [TBL] [Abstract][Full Text] [Related]
39. Net environmental benefit: introducing a new LCA approach on wastewater treatment systems. Godin D; Bouchard C; Vanrolleghem PA Water Sci Technol; 2012; 65(9):1624-31. PubMed ID: 22508125 [TBL] [Abstract][Full Text] [Related]
40. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants. Pan Y; Ye L; van den Akker B; Ganigué Pagès R; Musenze RS; Yuan Z Environ Sci Technol; 2016 Feb; 50(3):1368-75. PubMed ID: 26642353 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]