These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26901846)

  • 1. Co-sputtered MoRe thin films for carbon nanotube growth-compatible superconducting coplanar resonators.
    Götz KJ; Blien S; Stiller PL; Vavra O; Mayer T; Huber T; Meier TN; Kronseder M; Strunk Ch; Hüttel AK
    Nanotechnology; 2016 Apr; 27(13):135202. PubMed ID: 26901846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy.
    Malissa H; Schuster DI; Tyryshkin AM; Houck AA; Lyon SA
    Rev Sci Instrum; 2013 Feb; 84(2):025116. PubMed ID: 23464260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing dielectric properties of ultra-thin films using superconducting coplanar microwave resonators.
    Ebensperger NG; Ferdinand B; Koelle D; Kleiner R; Dressel M; Scheffler M
    Rev Sci Instrum; 2019 Nov; 90(11):114701. PubMed ID: 31779383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-beam assisted sputtering of titanium nitride thin films.
    Draher T; Polakovic T; Li J; Li Y; Welp U; Jiang JS; Pearson J; Armstrong W; Meziani ZE; Chang C; Kwok WK; Xiao Z; Novosad V
    Sci Rep; 2023 Apr; 13(1):6315. PubMed ID: 37072413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube films for room temperature hydrogen sensing.
    Sippel-Oakley J; Wang HT; Kang BS; Wu Z; Ren F; Rinzler AG; Pearton SJ
    Nanotechnology; 2005 Oct; 16(10):2218-21. PubMed ID: 20817998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and electrochemical properties of carbon films prepared by a electron cyclotron resonance sputtering method.
    Jia J; Kato D; Kurita R; Sato Y; Maruyama K; Suzuki K; Hirono S; Ando T; Niwa O
    Anal Chem; 2007 Jan; 79(1):98-105. PubMed ID: 17194126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of high frequency piezoelectric resonators utilizing laterally propagating fast modes in thin aluminum nitride (AlN) films.
    Yantchev V; Enlund J; Biurström J; Katardjiev I
    Ultrasonics; 2006 Dec; 45(1-4):208-12. PubMed ID: 17097706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced field emission from multiwall carbon nanotube films by secondary growth.
    Klinke C; Delvigne E; Barth JV; Kern K
    J Phys Chem B; 2005 Nov; 109(46):21677-80. PubMed ID: 16853815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices.
    King B; Panchapakesan B
    Nanotechnology; 2014 May; 25(17):175201. PubMed ID: 24721979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth Mechanism of Sputtered Films of YBa2Cu3O7 Studied by Scanning Tunneling Microscopy.
    Hawley M; Raistrick ID; Beery JG; Houlton RJ
    Science; 1991 Mar; 251(5001):1587-9. PubMed ID: 17793141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling carbon nanotube mechanics to a superconducting circuit.
    Schneider BH; Etaki S; van der Zant HS; Steele GA
    Sci Rep; 2012; 2():599. PubMed ID: 22953042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and superconductivity of niobium titanium alloy thin films on strontium titanate (001) single-crystal substrates for superconducting joints.
    Shimizu Y; Tonooka K; Yoshida Y; Furuse M; Takashima H
    Sci Rep; 2018 Oct; 8(1):15135. PubMed ID: 30310173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorocarbon Thin Films Fabricated using Carbon Nanotube/Polytetrafluoroethylene Composite Polymer Targets via Mid-Frequency Sputtering.
    Kim SH; Kim CH; Choi WJ; Lee TG; Cho SK; Yang YS; Lee JH; Lee SJ
    Sci Rep; 2017 May; 7(1):1451. PubMed ID: 28469153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An (ultra) high-vacuum compatible sputter source for oxide thin film growth.
    Mayr L; Köpfle N; Auer A; Klötzer B; Penner S
    Rev Sci Instrum; 2013 Sep; 84(9):094103. PubMed ID: 24089841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of a single-wall carbon nanotube film and its patterning as an n-type field effect transistor device using an integrated circuit compatible process.
    Shiau SH; Liu CW; Gau C; Dai BT
    Nanotechnology; 2008 Mar; 19(10):105303. PubMed ID: 21817696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of nanoscale phase separation and devitrification on the electrical transport properties of amorphous Cu-Nb alloy thin films.
    Bose S; Puthucode A; Banerjee R; Ayyub P
    J Phys Condens Matter; 2009 Jul; 21(28):285305. PubMed ID: 21828518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical oxide thickness for efficient single-walled carbon nanotube growth on silicon using thin SiO2 diffusion barriers.
    Simmons JM; Nichols BM; Marcus MS; Castellini OM; Hamers RJ; Eriksson MA
    Small; 2006 Jul; 2(7):902-9. PubMed ID: 17193143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Growth Temperature and Atmosphere Exposure Time on Impurity Incorporation in Sputtered Mg, Al, and Ca Thin Films.
    Aliramaji S; Keuter P; Neuß D; Hans M; Primetzhofer D; Depla D; Schneider JM
    Materials (Basel); 2023 Jan; 16(1):. PubMed ID: 36614754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of c-axis-oriented superconducting KFe₂As₂ thin films.
    Hiramatsu H; Matsuda S; Sato H; Kamiya T; Hosono H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14293-301. PubMed ID: 25032799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific heat measurement set-up for quench condensed thin superconducting films.
    Poran S; Molina-Ruiz M; Gérardin A; Frydman A; Bourgeois O
    Rev Sci Instrum; 2014 May; 85(5):053903. PubMed ID: 24880383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.