These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26902345)

  • 1. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.
    Henard CA; Smith H; Dowe N; Kalyuzhnaya MG; Pienkos PT; Guarnieri MT
    Sci Rep; 2016 Feb; 6():21585. PubMed ID: 26902345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1.
    Garg S; Clomburg JM; Gonzalez R
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):379-391. PubMed ID: 29675615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst.
    Henard CA; Smith HK; Guarnieri MT
    Metab Eng; 2017 May; 41():152-158. PubMed ID: 28377275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C.
    Garg S; Wu H; Clomburg JM; Bennett GN
    Metab Eng; 2018 Jul; 48():175-183. PubMed ID: 29883803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense.
    Puri AW; Owen S; Chu F; Chavkin T; Beck DA; Kalyuzhnaya MG; Lidstrom ME
    Appl Environ Microbiol; 2015 Mar; 81(5):1775-81. PubMed ID: 25548049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases.
    Ilmén M; Koivuranta K; Ruohonen L; Rajgarhia V; Suominen P; Penttilä M
    Microb Cell Fact; 2013 May; 12():53. PubMed ID: 23706009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1.
    Gilman A; Laurens LM; Puri AW; Chu F; Pienkos PT; Lidstrom ME
    Microb Cell Fact; 2015 Nov; 14():182. PubMed ID: 26572866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.
    Nguyen AD; Hwang IY; Lee OK; Kim D; Kalyuzhnaya MG; Mariyana R; Hadiyati S; Kim MS; Lee EY
    Metab Eng; 2018 May; 47():323-333. PubMed ID: 29673960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1).
    de la Torre A; Metivier A; Chu F; Laurens LM; Beck DA; Pienkos PT; Lidstrom ME; Kalyuzhnaya MG
    Microb Cell Fact; 2015 Nov; 14():188. PubMed ID: 26607880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High production of ectoine from methane in genetically engineered Methylomicrobium alcaliphilum 20Z by preventing ectoine degradation.
    Lim SE; Cho S; Choi Y; Na JG; Lee J
    Microb Cell Fact; 2024 May; 23(1):127. PubMed ID: 38698430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium.
    Kalyuzhnaya MG; Yang S; Rozova ON; Smalley NE; Clubb J; Lamb A; Gowda GA; Raftery D; Fu Y; Bringel F; Vuilleumier S; Beck DA; Trotsenko YA; Khmelenina VN; Lidstrom ME
    Nat Commun; 2013; 4():2785. PubMed ID: 24302011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroporation-Based Genetic Manipulation in Type I Methanotrophs.
    Yan X; Chu F; Puri AW; Fu Y; Lidstrom ME
    Appl Environ Microbiol; 2016 Jan; 82(7):2062-2069. PubMed ID: 26801578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconversion of natural gas to liquid fuel: opportunities and challenges.
    Fei Q; Guarnieri MT; Tao L; Laurens LM; Dowe N; Pienkos PT
    Biotechnol Adv; 2014; 32(3):596-614. PubMed ID: 24726715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of L-lactic acid from xylose by Pichia stipitis.
    Ilmén M; Koivuranta K; Ruohonen L; Suominen P; Penttilä M
    Appl Environ Microbiol; 2007 Jan; 73(1):117-23. PubMed ID: 17071782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemerythrins enhance aerobic respiration in Methylomicrobium alcaliphilum 20ZR, a methane-consuming bacterium.
    Nariya S; Kalyuzhnaya MG
    FEMS Microbiol Lett; 2020 Jan; 367(2):. PubMed ID: 32053143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core Metabolism Shifts during Growth on Methanol versus Methane in the Methanotroph
    Fu Y; He L; Reeve J; Beck DAC; Lidstrom ME
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967465
    [No Abstract]   [Full Text] [Related]  

  • 18. Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli.
    Mazumdar S; Blankschien MD; Clomburg JM; Gonzalez R
    Microb Cell Fact; 2013 Jan; 12():7. PubMed ID: 23347598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogas Biocatalysis: Methanotrophic Bacterial Cultivation, Metabolite Profiling, and Bioconversion to Lactic Acid.
    Henard CA; Franklin TG; Youhenna B; But S; Alexander D; Kalyuzhnaya MG; Guarnieri MT
    Front Microbiol; 2018; 9():2610. PubMed ID: 30429839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of L-lactate in Leuconostoc citreum via heterologous expression of L-lactate dehydrogenase gene.
    Jin Q; Jung JY; Kim YJ; Eom HJ; Kim SY; Kim TJ; Han NS
    J Biotechnol; 2009 Oct; 144(2):160-4. PubMed ID: 19699768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.