These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26902525)

  • 1. Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study.
    Zapf MP; Boon MY; Lovell NH; Suaning GJ
    J Neural Eng; 2016 Apr; 13(2):026022. PubMed ID: 26902525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an assistive peripheral visual prosthesis for long-term treatment of retinitis pigmentosa: evaluating mobility performance in immersive simulations.
    Zapf MP; Boon MY; Matteucci PB; Lovell NH; Suaning GJ
    J Neural Eng; 2015 Jun; 12(3):036001. PubMed ID: 25782059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assistive peripheral prosthetic vision aids perception and mobility in outdoor environments: A virtual-reality simulation study.
    Zapf MP; Boon MY; Lovell NH; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1638-41. PubMed ID: 26736589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of visual field position induced by a retinal prosthesis simulator on mobility.
    Endo T; Hozumi K; Hirota M; Kanda H; Morimoto T; Nishida K; Fujikado T
    Graefes Arch Clin Exp Ophthalmol; 2019 Aug; 257(8):1765-1770. PubMed ID: 31147839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa.
    Yue L; Castillo J; Gonzalez AC; Neitz J; Humayun MS
    Ophthalmology; 2021 Mar; 128(3):453-462. PubMed ID: 32858064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.
    Vergnieux V; Macé MJ; Jouffrais C
    Artif Organs; 2017 Sep; 41(9):852-861. PubMed ID: 28321887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
    Xia P; Hu J; Peng Y
    Artif Organs; 2015 Dec; 39(12):1038-45. PubMed ID: 25912967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects.
    Gekeler F; Messias A; Ottinger M; Bartz-Schmidt KU; Zrenner E
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4966-74. PubMed ID: 17065515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threshold levels of visual field and acuity loss related to significant decreases in the quality of life and emotional states of patients with retinitis pigmentosa.
    Azoulay L; Chaumet-Riffaud P; Jaron S; Roux C; Sancho S; Berdugo N; Audo I; Sahel JA; Mohand-Saïd S
    Ophthalmic Res; 2015; 54(2):78-84. PubMed ID: 26228470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory augmentation to aid training with retinal prostheses.
    Kvansakul J; Hamilton L; Ayton LN; McCarthy C; Petoe MA
    J Neural Eng; 2020 Jul; 17(4):045001. PubMed ID: 32554868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual wayfinding using simulated prosthetic vision in gaze-locked viewing.
    Wang L; Yang L; Dagnelie G
    Optom Vis Sci; 2008 Nov; 85(11):E1057-63. PubMed ID: 18981914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rehabilitation regimes based upon psychophysical studies of prosthetic vision.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    J Neural Eng; 2009 Jun; 6(3):035009. PubMed ID: 19458400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation and mobility assessment in retinal prosthetic clinical trials.
    Geruschat DR; Bittner AK; Dagnelie G
    Optom Vis Sci; 2012 Sep; 89(9):1308-15. PubMed ID: 22902422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the perceptual effects of electrode-retina distance in prosthetic vision.
    Avraham D; Yitzhaky Y
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35561665
    [No Abstract]   [Full Text] [Related]  

  • 16. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and possible visual consequences of photopsias as vision measures are reduced in retinitis pigmentosa.
    Bittner AK; Diener-West M; Dagnelie G
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6370-6. PubMed ID: 21693605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards photorealistic and immersive virtual-reality environments for simulated prosthetic vision: integrating recent breakthroughs in consumer hardware and software.
    Zapf MP; Matteucci PB; Lovell NH; Zheng S; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2597-600. PubMed ID: 25570522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term Repeatability and Reproducibility of Phosphene Characteristics in Chronically Implanted Argus II Retinal Prosthesis Subjects.
    Luo YH; Zhong JJ; Clemo M; da Cruz L
    Am J Ophthalmol; 2016 Oct; 170():100-109. PubMed ID: 27491695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual reality validation of naturalistic modulation strategies to counteract fading in retinal stimulation.
    Thorn JT; Chenais NAL; Hinrichs S; Chatelain M; Ghezzi D
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35240583
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.