BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26902752)

  • 1. Effect of doping β-NiOOH with Co on the catalytic oxidation of water: DFT+U calculations.
    Costanzo F
    Phys Chem Chem Phys; 2016 Mar; 18(10):7490-501. PubMed ID: 26902752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly facet-dependent activity of iron-doped β-nickel oxyhydroxide for the oxygen evolution reaction.
    Govind Rajan A; Martirez JMP; Carter EA
    Phys Chem Chem Phys; 2024 May; 26(20):14721-14733. PubMed ID: 38716632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001).
    Tkalych AJ; Martirez JMP; Carter EA
    Phys Chem Chem Phys; 2018 Jul; 20(29):19525-19531. PubMed ID: 29999072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water.
    Bajdich M; García-Mota M; Vojvodic A; Nørskov JK; Bell AT
    J Am Chem Soc; 2013 Sep; 135(36):13521-30. PubMed ID: 23944254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secret behind the success of doping nickel oxyhydroxide with iron.
    Fidelsky V; Toroker MC
    Phys Chem Chem Phys; 2017 Mar; 19(11):7491-7497. PubMed ID: 28197563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and indirect role of Fe doping in NiOOH monolayer for water oxidation catalysis.
    Kumar M; Piccinin S; Srinivasan V
    Chemphyschem; 2022 Jul; 23(14):e202200085. PubMed ID: 35491429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials.
    Govind Rajan A; Martirez JMP; Carter EA
    J Am Chem Soc; 2020 Feb; 142(7):3600-3612. PubMed ID: 31961150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.
    Liao P; Keith JA; Carter EA
    J Am Chem Soc; 2012 Aug; 134(32):13296-309. PubMed ID: 22788792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density Functional Theory Study of NiFeCo Trinary Oxy-Hydroxides for an Efficient and Stable Oxygen Evolution Reaction Catalyst.
    Ullah H; Loh A; Trudgeon DP; Li X
    ACS Omega; 2020 Aug; 5(32):20517-20524. PubMed ID: 32832804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings.
    Li YF; Liu ZP; Liu L; Gao W
    J Am Chem Soc; 2010 Sep; 132(37):13008-15. PubMed ID: 20738085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Crystallization of Active NiOOH/CoOOH Heterostructures with Hydroxide Ion Adsorption Sites on Velutipes-like CoSe/NiSe Nanorods as Catalysts for Oxygen Evolution and Cocatalysts for Methanol Oxidation.
    Du J; You S; Li X; Tang B; Jiang B; Yu Y; Cai Z; Ren N; Zou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):686-697. PubMed ID: 31825209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-site OER mechanism exploration through regulating asymmetric multi-site NiOOH.
    Wu F; Wu B; Chen L; Wang Y; Li J; Zhang Q
    Nanoscale; 2024 Jul; ():. PubMed ID: 38967458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Layer Deposition of NiOOH/Ni(OH)
    Patil B; Satilmis B; Khalily MA; Uyar T
    ChemSusChem; 2019 Apr; 12(7):1469-1477. PubMed ID: 30637965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO₃ (B = Cr, Mn, Fe, Co and Ni).
    Lee YL; Gadre MJ; Shao-Horn Y; Morgan D
    Phys Chem Chem Phys; 2015 Sep; 17(33):21643-63. PubMed ID: 26227442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Oxidation Catalysis for NiOOH by a Metropolis Monte Carlo Algorithm.
    Hareli C; Caspary Toroker M
    J Chem Theory Comput; 2018 May; 14(5):2380-2385. PubMed ID: 29614216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the Performance of ZnO for Oxygen Evolution by Effective Transition Metal Doping.
    Liang Q; Brocks G; Sinha V; Bieberle-Hütter A
    ChemSusChem; 2021 Aug; 14(15):3064-3073. PubMed ID: 34037325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical Cluster Models for a Layered β-NiOOH Material.
    Butera V; Toroker MC
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling Oxygen Evolution on Iron-Doped β-Nickel Oxyhydroxide: The Key Role of Highly Active Molecular-like Sites.
    Martirez JMP; Carter EA
    J Am Chem Soc; 2019 Jan; 141(1):693-705. PubMed ID: 30543110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides.
    Liu X; Fan X; Huang H; HaipingLin ; Gao J
    J Colloid Interface Sci; 2021 Apr; 587():385-392. PubMed ID: 33360908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NiOOH Exfoliation-Free Nickel Octahedra as Highly Active and Durable Electrocatalysts Toward the Oxygen Evolution Reaction in an Alkaline Electrolyte.
    Kim B; Oh A; Kabiraz MK; Hong Y; Joo J; Baik H; Choi SI; Lee K
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10115-10122. PubMed ID: 29513002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.